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by

A. C. Robinson

1.0, INTRODUCTION

In many space vehicle maneuvers, the thrust levels are
sufficiently high and the thrusting periods sufficiently short when
compared with the flight time, that it is useful to approximate the
thrust period by an impulsive thrust (i.e., an instaﬁtaneous change
in velocity with no change in position).

If this approximation is to be used, there remains the
question of the number, size, point of application, and direction of
application of these impulses. Since there is usually an infinite

" number of ways in which impulses can be used to perform any given
maneuver, some rule must be adopted for selecting the one actqally
to be used. The most commonly-used rule is tS select that maneuver
which will utilize the least fuel. This selection is based on the
assumption that the less fuel used, the smaller, cheaper and more
rgliable the system will‘be, and, hence, the more desirable.

While there is some merit to this assumption, it is not
necessarily an infallible guide. For example, a number of recent
investigations have shownvthat for various maneuvers, the fuel-optimal

number of impulses may be rather large, perhaps running as high as six.
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The weight and reliability problems associated with realizing six

separate impulses motivate a re-examination of the minimum-fuel

criterion. As a first step in this re-examination, it is of interest

to inquire just how much fuel is saved in these multiple impulse
maneuvers, Thus, if a six-impulse maneuver takes only 17 less fuel

than a two-impulse maneuver, then the two-impulse approach may be

preferred.

This—#eporT—T5 5 coT1eciIon A TOTTE AT oo f available

information relating to the amount of fuel saved by using many

"impulses rather than the minimum number required to accomplish

the maneuver., Iven & cursory examination of the literatiure reveals
that there is no single answer to this question, There are some
maneuvers for which multiple impulses presént no advantage whatever,
There are others for which they make possible a moderate fuel saving.
There are still other cases in which the multiple-impulse option

is extremely advantageous.

Accordingly, a number of different maneuvers are discussed

-separately in the following sections, and the available information

on comparisons is reviewed for each one. Before proceeding with
these separate discussions, a general space maneuver problem is
formulated, and its status is reviewed. If it is ever to be
possible to make general statements about the optimum number of

impulses, those statements will probably be based on the theory of

the general problem.
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The weight and reliability problems associated with realizing six
separate impulses motivate a re-examination of the minimum-fuel
criterion. As a first step in this re-examination, it is of interest
to inquive just how much fuel is saved in these multiple impulse
maneuvers, Thus, if a six-impulse maneuver takes only 17 less fuel
than a two-impulse maneuver, then the two-impulse approach may be
preferred.

This report is a collection and correlation of available
information relating to the amount of fuel saved by using many
impulses rather than the minimum number required to accomplish
the maneuver. ESven a cursory examination of the literature reveals
that there is no single answer to this question. There are some
maneuvers for which multiple impulses presént no advantage whatever,
There are others for which they make possible a moderate fuel saving.
There are still other cases in which the multiple-impulse option
is extremely advantageous.

Accordingly, a number of different maneuvers are discussed
separately in the following sections, and the available information
on comparisons is reviewed for each one. Before proceeding with
these separate discussions, a general space maneuver problem is
formulated, and its status is reviewed. If it is ever to be
possible to make general statements about the optimum number of
impulses, those statements will probably be based on the theory of

the general problem.




l.1. Previous Surveys

While the subject has apparently never been reviewed from
exactly the standpoint considered here, there are several publications
reviewing the fields of optimal control and optimal trajectories
which contain many relevant references and discussions on the subject.

Lawden (83? presents a concise review of the status of the
theory of optimal trajectories in general, and impulsive trajectories
in particular at the time of publication (1963). Lawden's primary emphasis
is on the general problem, necessary conditions, and structure of the
solution. These are all areas to which Lawden himself made substantial
contributions during the preceeding decade. Two surveys of optimal
control theory by Paiewonsky (115) and Athans (4) also contain some
discussion of and references for the optimal impulsive problem. Two
surveys by Leitmann (87, 88) are more specifically oriented toward
trajectory problems, both impulsive and non-impulsive. Edelbaum (35)
and Dowlen and Seddon (30) review a number of space maneuvers and
discuss useful ways of performing them. The latter work has a
particularly extensive list of references.

The surveys which come closest to the present‘one are those by
Edelbaum (34,37). These papers review the field of impulsive
transfer and enumerate the results available on maneuvers which have
been optimized, and the optimal number of impulsgs for each. Edelbaum
was not primarily concerned with a comparison between these Optimél and

various reasonable non-optimal maneuvers.

ol

* Numbers in parentheses indicate references,




1.2. Statement of a General Fuel-Optiﬁéi Problem (Problem A)

Consider a system defined by the integral equations
t | t
v(e) + [ glr,e(m)ar + [ a(ryav(n
t t

S S
t

() + [ v(ndr

t
s

1.2-1) v(t)

n

]

1.2-2) r(t)

where v, r, g and o« are three-vector functions defined on t1 é t é t2.
Let g(T,r(T)) have two continuous derivatives with respect to all

arguments. The second integral of equation (1.2-1) is a Lebeéque-Stieltjes
integral and V(7) is a non-decreasing (scalar) function of bounded

variation with V(tl) = 0. The function o(T) is a measurable function

restricted by

_ 2 2 2 _
1.2-3) o)l -'\/;x(t) + a/y(t) + dz(t) =1 ty /: t L t, -
The boundary conditions tl’ v(tl), r(tl); tZ’V(tZ)’ r(tz) must

*
lie on some region BeE14€ which is defined as the set of all values

satisfying the equation

1.2-4) 1J"'(tl’ V(t1)9 V(tl): tz V(tz)s r(tz): 8) =0

s
where { is a p-vector, p /. 14. B8 is a vector compesed of the parameters
specifying the details of the problem being considered. For example, in
an orbit transfer, B might contain the orbital elements of the initial
and final orbits.

A set of controls a(t), v(t), t) Lt é t, and the trajectory

v(t), r(t), ty Lt /L t, are said to be admissible if: a) the equations

* The maximum number of boundary conditions which can be specified is
14: initial and final values of r(t) and v(t) and the initial and
final values of t.




of motion (1.2-1) and (1.2-2) are satisfied; b) g(t) satisfies
(1.2-3); c) the boundary conditions satisfy (1.2-4).

The optimization problem to be solved is: out of all the
admissible trajectories, find the one which minimizes V(t2) (if such a
minimizing trajectory exists).

To relate this problem to a more familiar one, suppose that
V(t) is continuous everywhere and differentiable almost everywhere.
Where the derivative of V(t) exists, designate it by a(t), so that,

almost everywhere,
1.2-5) dv

Then Equations (1.2-1) and (1.2-2) may be differentiated in the ordinary

sense, yielding

1.2-6) v g(t,r) + a(t)a(t)
1.2-7) T =v

or, combining the two,

1.2-8) r = g(t,r) + a(t)a(t)

1

This is the equation of motion of a point mass, moving in a gravitational
field g(t,r) and under the influence of a thrust acceleration of magnitude
a(t) in the direction of the unit vector o(t).

If, furthermore, «(t) is assumed to be piecewise continuous,
then one obtains a conventional control problem with the function to be
minimized

-t
2
1.2-9) v(e,) = [ a(t)dt
2 £y

The quantity V(tz) is frequently called the '"characteristic
velocity" associated with the trajectory. Minimizing it will minimize the

amount of fuel used, if one is considering a typical chemical rocket
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mechanism and if all the fuel has the same specific impulse. The slope
of V is proportional to the thrust. Thus, if V is constant, no thrust
is being applied. If V has a finite slope, then a thrust of finite
magnitude is indicated. If V is discontinuous at some point, then an
impulsive thrust is applied at that point. The magnitude of the impulse
is proportional to the magnitude of the discontinuity in V.

For subsequent discussion, the optimization problem defined
above is designated as Problem A. If a solution exists, there will
be a certain value of V(tz) associated with the optimal trajectory.
Designate this minimum characteristic velocity by JA and observe that

it will be a function of the problem parameters represented in the vector B8.

The minimal characteristic velocity may be written as JA(B).

1.3. Necessary Conditions and Sufficient Conditions

Necessary conditions were developed for this problem by Lawden
in a series of papers which are summarized in his book (83). Lawden
does not make use of an integral equation representation, but, rather,
differential equations. He deduces formally what will happen in the
case of bounded thrust as the thrust becomes large.

Lawden and others have used this approach to draw various
conclusions about the nature of the optimal trajectory, and such
conclusions appear to be correct. However, there remained the question
of rigorous justification of these results.

Four papers appeared almost simultaneously in 1965 dealing

with optimum control problems in which impulses appeared. These were

by Neustadt (110), Schmaedeke (130), Rishel (124) and Warga (149).
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0f these, only Neustadt (110) considered exactly the same
problem as Lawden. The others were working with more general control
problems. Neustadt showed' that, under proper hypotheses, Lawden's
conjectures are valid. He established necessary conditions for a
problem similar to that stated at the beginning of this section, though
he used fixed initial conditions. This restriction is not essential,
however, and could be.removed with relative ease, at the cost of
additional transversality conditions.

Schmaedeke (130) defined what he called "measure differential
equations" which are really equations like (1.2-1) which have been
formally differentiated. 1In fact, he made use of the integral equation
version in deriving many of his results. Most of his paper deals with
extending classical results in differential equations to this type of
equation, e.g., existence, uniqueness, dependence on initial conditions,
etc., which do not relate specifically to optimization problems.

He does state an optimization problem an‘\pt,ves some existence theorems.
He does not, however, develop necessary conditions.

Rishel (124) used an interesting transformation of the independent
variable to reduce the impulsive problem to one which fits within the
classical Pontryagin or variational framework. Necessary conditions can
then be derived directly from the usual ones. Rishel assumed that the
initial and final states were fixed, but in view of his method of
procedure it is a trivial matter to remove this restriction, as he points
out ‘himself in a later paper (125).

Warga's (149) procedure is somewhat similar to Rishel's; reducing

the impulsive problem to the usual problem by changing the independent




variable. Warga, however, treats the problem with state variable
constraints, following some of his own earlier work on that subject.

To summarize, for the general problem, necessary conditions
are available which make it possible to derive the two-point boundary
value problem whose solution might be the optimum trajectory. Some
problems have been solved analytically using these necessary conditions
(110, 125), and some existence results are available,

Certain very desirable pieces of information are missing,
however. It appears, on the basis of experience with the problem, that
impulsive coutrol is always at least as good as the best continuous or
mixed control. It is not, however, possible to assert this in any
rigorous way, for the general case. Nor can it be established, in
general, how many impulses should be used to come within some given
increment of the absolute minimum of fuel. These are both questions of
considerable practical significance, but they remain open at present.

Lawden argued some years ago (74) that the optimal thrust
program was always impulsive. However, when he later discovered (81)
an arc with intermediate thrust (neither null thrust nor infinite thrust)
which satisfied many of the necessary conditions, he expressed doubts
about his former conclusions.

Further analysis (70,126), especially that of Kopp and Moyer (70)
developed additional necessary conditions which were not satisfied along
Lawden's intermediate thrust arc. This shows that this particular arc,
at least, is not an optimum. McCue and Hoy (98) also showed this

numerically,
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While intermediate-thrust arcs cannot be completely excluded
(126,47), they have yet to be shown superior to impulsive trajectories
in any problem‘of practicai interest. There are some cases where
intermediate-thrust arcs are known which give the same fuel utilization
as impulsive ones, but none where they are better.

As will be mentioned later, if there is only one attracting
center, it can be shown that impulsive thrusting is optimal in coplanar
problems. 1In the general problem, however, analogous results are not

available.

1.4, Statement of an n-Impulse Fuel-Optimal Problem (Problem Bn)

The general problem stated in section 1.2 is clearly a
variational problem., It could encompass purely continuous thrust,
purely impulsive thrust, mixed continuous and impulsive thrust, or,
for that matter, more complex types of control such as “chattering" or
"sliding state' control.

Suppose, however, only purely impulsive control is admitted.
Further, suppose the number of impulses is selected in advance. Then

the fuel-optimal problem becomes an ordinary minimization problem,

This is considerably easier to treat, either mathematically or computationally.

Under these assumptions, the function V(t) may be represented as

=}

1.4-1) V(t) =% Lou(t-m1) |
=1

P

where u(t) is the unit step function and I, is the magnitude of the

k

impulse occurring at time T where tl L T L t2. Using this form for V,

.
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equations (1.2-1) and (1.2-2) become

1.4-2) v(t)

t n )
v(tl) +. t{ g(t,x(r))dr+ §=1Ik a(tk) u(t-Tk)

t

1.4-3) r(t) = r(t)) + [ v(ryar .
1

The problem is now that of selecting the 5n parameters

Ty Ik,a(Tk) to minimize

I

1.4-4) I=V(t,) =
=1

~Mp

subject to the requirement that the boundary conditions of equation

(1.2-4) are met, and also that

2 2 2
- T = = e
1.4-5) @ (Tk) + dy (Tk) + oo ( k) 1 k=1,2-'n

It might be argued that there are really only 4n parameters
to be selected, since the three components of each a(Tk) are not
independent of each other. It takes only two parameters to specify a
direction in space. However, all two-parameter specifications of a
direction in space suffer from ambiguity at some particular direction,
so the more definite three-parameter-plus-constraint representation has
been used here.

Using this representation, the impulses are completely specified
by a vector with 5n components, which is designated here by s. The
vector s cannot be freely chosen. Let S be the set of all vectors s
such that, if the impulses are put into equations (1.4-2) and (1.4-3),

the boundary conditions (1.2-4) can be met and equations (1.4-5) will
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be satisfied. The value of I in equation (1.4-4) will clearly depend
on s.

The problem now is to find a vector s¥% € S such that
1.4-6) I(s*) L I(s) sesS
If there exists such an s¥*, then designate I(s%) by Jn. This will
clearly depend on the problem parameters, so the minimum characteristic
velocity for this problem may be designated Jn(B). The problem will
be called Problem Bn'

This is an ordinary minimization problem: find the vector s
which minimizes I(s) subject to s € §S. It is, however, not an elementary
problem because of the method of definition of S. It is unambiguous,
but S cannot, in general, be defined in terms of algebraic equalities
or inequalities,

There are some problems, however, for which the definition
of S can be so reduced, and these will be discussed in the next section.
Almost all of these involve a single attracting center, so that the
trajectory segments between impulses are Keplerian.

It would be interesting to be able to compare the results of
problem Bn with those of problem A, However, rigorously certifiable
solutions to problem A are available only in a small number of very
simple problems. It will be necessary, then, to conduct comparisons
between Jn(BL n) 2 with JZ(B), or with Jl(s) in those cases where
one-impulse maneuvers are feasible. The comparison should be made for
each value of B, and where possible, this will be done. However, complete

definitions of Jn(B) are available only in a small number of cases.
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2,0, A SINGLE ATTRACTING CENTER (TWO-BODY PROBLEM)

Practically all studies of minimum-fuel maneuvers have
involved a Keplerian force field: a pure inverse-square field about a
fixed attracting center, This is an idealization which is useful,
within limits, for studying interplanetary flight when the wvehicle is
not appreciably influenced by planetary gravitation, and in studying
maneuvers in the near vicinity of a planet.

While this idealization is of limited accuracy in sdﬁe contexts,
it is simply deséribed and a number of relatively general results have
been obtained. These results, classified according to the types of
orbit the vehicle is in before and after the maneuver, are reviewed in

the following sections,

2.1. Coplanar Time-Free Transfers

Within the class of impulsive maneuver problems in a Keplerian
force field, coplanar time-free transfers have received the greatest
share of attention, and results for this problem are nearly complete.

This is the only type of problem within the scope of this study for
which such a statement can be made.

The vehicle is assumed to be initially in an orbit which is
at least partially specified. The problem is to transfer to another orbit
(at least partially specified) using minimum fuel. The initial and final
orbit and all portions of the transfer orbit are required to lie in a
single fixed plane containing the attracting center. The time required

for the transfer is left completely free.




This last assumption, that of free time, immensely simplifies
the analysis, but at the same time, it leads to difficulties. There are
a number of cases in which £he minimum-fuel maneuvers have transfer times
which are either very large, or actually infinite. In those cases for which
this situation is known to exist, it will be pointed out, Infinite-time
trajectories are of little practical use, and their existence illustrates
the danger of following a single optimization criterion too far. Even in
those cases where the minimum-fuel maneuver takes an infinite time, the
result is useful, however, as a lower bound on the fuel requiréd in a

practical trajectory.

2,1,1. Circular Orbits (Hohmann Transfer)

If it is desired to transfer from one circular orbit to another
of different radius but rotating in the same direction using minimum fuel,
then the optimum maneuver (time-free) is now completely known.

This problem was first considered by Hohmann (56) who suggested
that the optimum transfer was by means of two impulses, one applied in a
tangential direction on the initial orbit, and the other in a tangential
direction on the final orbit. The transfer orbit is an ellipse which is

tangent to both orbits. This type of maneuver is indicated in Figure 2.1.1-1,

(a) Transfer from Cuter Initial (b) Transfer from Inner Initial
Orbit T to Inner Orbit F Orbit I to Outer Orbit F

FIGURE 2.i.1-1., HOHIMANN TRANSFERS
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This problem has been considered by a number of investigators

since Hohmann, and many results can be rigorously demonstrated. The

following statements can be made:

(a) The optimal thrust program is impulsive. This

has been shown by Marchal (93), Contensou (23),
Winn (152), Busemann and Culp (19), and others,
in some cases, for the more general problem of
transfer between elliptical orbits as well.

(b) More than three impulses are not necessary to

realize minimum fuel. This was shown by

Ting (137) and, in a more general form,~by‘

Marchal (93). It is also consistent with

Neustadt's results on neighboring orbits (109).
It is possible to realize this transfer using any number of impulses,
and, in fact, it is possible to find n-impulse transfers which use the
same amount of fuel as the two~ or three-impulse maneuvers, but it is
not possible to reduce the fuel requirement by using a number larger
than three. Since the transfer cannot physically be accomplished with
one impulse, except in the trivial case where the two orbits are coin-
cident, the choice is between two impulses and three.

(c) Two-impulse Hohmann transfers are optimum if the

ratio of the two orbit radii is less than 11,94,

Otherwise a three-impulse transfer via infinity
is aqptimum, It was shown by Barrar (7) that the
Hohmann transfer is always the absolute optimum
among two-impulse transfers., However, if the
;atio between orbit radii is sufficiently large,
then there exists a three-impulse transfer which

uses less fuel than the Hohmann transfer (32),
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The characteristic velocity AV, required to transfer from an
inner orbit of radius r, (measured from the center of the attracting body)
and circular velocity V1 to an outer orbit with radius r, by means of a

two-impulse transfer is [see, e.g., Ruppe (129)]:

.

r
-2 -1+-—-1/ 7
r
V1 ﬁ\/ _\/f .
— ]_+_..
r

1

2.1.1-1) AV2 =

a—

The optimum three impulse maneuver consists of: (a) a tangential

impulse T, on the inner orbit which raises the velocity to the parabolic

1

escape speed; (b) an infinitesmal impulse T, at infinity which transfers

2
the vehicle to a different parabola: one which has a pericenter on the second
orbit; (c¢) a tangential impulse T3 at the pericenter of this new parabola

which reduces the velocity to the local circular velocity. This is indicated

schematically in Figure 2.1,1-2,
T

3

T2 at oo -n—%

FIGURE 2,1.1-2, OPTIMUM CIRCLE-TO-CIRCLE TRANSFER USING THREE IMPULSES

The characteristic velocity required for this maneuver is

v, (Y2 a N .
T2

2.1.1-2)
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The velocity requirements of the two maneuvers are compared in
Figure 2.1,1-3.

Note that the velocity requirement for the two-impulse tramsfer
(the solid curve) reaches a maximum at about r2/r1 = 17. For larger ratios,
the two-impulse transfer actually requires less fuel than it does for
r2/rl = 17. This means it would be easier to escape the central attracting
body than to transfer to an orbit 17 times farther out than the initial
orbit.

The three-impulse transfer (dashed curve) becomes better than
the two-impulse when rZ/r1 reaches 11,94, and it remains better for all
larger ratios. The advantage of the three-impulse maneuver over the
two-impulse is, however, never very large. t does not exceed 8% for any
value of r2/rl° Since the theoretically optimum three-impulse transfer
would take an infinite amount of time, it may not be useful on a practical
basis., However, modest gains are possible by applying the second impulse at

a large out finite distance., For example, if T, is applied at a distance of

2

only 2r,, 47 savings are possible,

2’
In any event, this is one of the very small number of fuel-optimal
maneuver problems which is completely solved. The form of the solution is

known, and the minimum characteristic velocity is available in closed form

for all values of the parameters.

(2 . ; L2
2.1.1-3) Y r, r
;—2—511.94
AV , = /_._ \1 o+ _2 !
o min ! 2r
v, .
/ \
1, ! [y / r
\ l- iz -1 11 r, -2 11,94,
H f r]_

This is, of course, a particularly simple problem, depending as it does on

only two parameters ry and r, (in addition to the gravitational constant which

has an effect on Vl)'
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All of the above fesults have been based on the assumption that
the two orbits are moving in the same sense around the attracting center.
For the sake of logical completeness, it is of interest to inquire about
the case of transferring frém one circular orbiﬁ to another rotating in the
opposite direction. This problem has apparently not been considered, perhaps
because of its minimal practical interest. It seems certaig that the fuel-
optimal transfer would involve transferring to a parabolic orbit, reversing

the direction at infinity with a new parabolic return.

2.1.2, Elliptic Orbits

The next more complex problem is that of transfer between two
arbitrary elliptic orbits, 1In general, the solution to this problem will
depend on five parameters, For example, these parametérs might be taken
as the two orbit eccentricities, the two orbit semimajor axes, and the angle
between the two lines of apsides (see Figure 2.1,2-1 for am illustration of
this angle). If both the orbi;s are circular, this problem degenerates to
that of the preceding section, If one is circular, the apsidal orientation
of the other becomes immaterial, and the problem then depends on only three
parameters: the radius of the circular orbit, the semimajor axis and
eccentricity of the elliptical orbit,

Before reviewing the results for some of the special cases, it
is useful to consider the general results which are available, some of
them rather recent:

(a) The optimal thrust program is impulsive.

This was shown by Marchal in a remarkable faper (93)
which gives the most thorough treatment of this
problem now available. Winn (152) shows the

result in the case where one of the orbits is

a circle,
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(b) More than three impulses are not necessary to

realize minimum fuel. Ting (137) and Marchal (93)

have both arrived at this result by different methods.

(¢) Even if motion out of the common orbit plane is

allowed, the optimal transfer orbit will lie entirely

in the plane., This has been argued by a number of

authors in a number of different ways, but the demon-
stration of Buseman and Culp (19) is perhaps the
most simple and elegant.

Beyond this, not much can be said about the general case. 1If
the two orbits intersect, then one-impulse transfers are feasible. Therefore,
one-, two-, and three-impulse transfers must all be considered.

One-impulse transfers can be disposed of with relative ease.

They have been studied by both Marchal (93) and Moyer (104). The number
of conditions which must be met is such that one-impulse transfers will
seldom be optimal.

The choice between two- and three-impulse transfers is more
involved. Marchal (93) finds two possible types of three-impulse transfers.
One is of the same type considered in the preceding section: (a) an acceler-
ative impulse transferring the vehicle to a parabolic trajectory; (b) one or
more infinitesmal impulses at infinity, transferring to a parabola which is
tangent to the final orbit; (c) a braking impulse at the intersection of the
second parabola and the final ellipse.

The second type of three-impulse transfer is one in which all three

impulses are finite and applied at finite distances. The first impulse transfers

the vehicle to an elliptical orbit of large, but finite apocenter, The second
impulse transfers from this ellipse to another which intersects the final
orbit. The third impulse is at the intersection of the second transfer

ellipse and the final orbit,
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Marchal (93) gives necessary conditions for the optimality of
these finite three-impulse transfers, and these conditions are somewhat
restrictive., They are: (a).the sum of the eccentricities of the initial
and final orbits must exceed 1.712; (b) the angle between the lines of

apsides of the initial and final orbits must not exceed 22°; (c)

P

§%<: ﬁl.<;Z% where Pl and P2 are the pericenter radii of the initial
P

2

and final orbits, respectively. Because of the eccentricity requirement,
it appears that these transfers will be somewhat unusual.

In most cases, the choice will be between two-impulse transfers
(with a single intermediate transfer ellipse) and three-impulse transfers
via infinity (with two intermediate transfer parabolas), If the initial
and final orbits are not too dissimilar the optimum will be two-impulse.
If the two are greatly dissimilar, then the optimum will be three~impulse
transfer via infinity.

To give a precise statement of the conditions under which the
various types of maneuver are optimal is a matter of some complexity.
Marchal (93) has not succeeded in doing this completely, but he has made
a éignificant contribution. He presents a number of results bearing on
this question., For a complete review of them, the reader should consult
the original paper. However, to give some idea of the type of conclusion
he presents, one of the more interesting of his figures is reproduced
here as Figure 2,1.2-1, This applies only to the case where the initial
and final orbits do not intersect, In the case of intersecting orbits,

he has a different discussion and method of presenting the data,
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In Figure 2.1,2-1, P1 and P2 are the pericenter distances of

the initial and final orbits and e, is the eccentricity of the final
orbit. These are only three of the five parameters defining the entire
problem, so it is not surprising that this plot does not permit complete
determination of the optimal mode, However, for all tr;nsfer problems

having P PZ’ and e,» which plot into a point lying above curve C, and

1’ 1

to the left of curve C the optimal transfer will be two-impulse.

3’
Above C1 and to the right of 03, the optimal transfer could be two-impulse
or finite three-impulse, depending on other parameters of the problem.

Similarly, points lying below C, will definitely have three-impulse

2
optimal transfers via infinity. The other regions of the plot have
corresponding interpretations., This illustrates the fact that selection

of the minimum~-fuel maneuver in this problem is rather involved.

2.1.2.,1., Contensou's Method, The general approach used by

Marchal and sevéral other recent investigators should be mentioned here,
because it has led to the present satisfactory state of this problem. It
appears to have been originated by Contensou (23), though a number of others
have made effective use of it (19, 152, 52, 24, 103, and 14).

The general variational problem stated in Section 1.2 is difficult
to handle theoretically. Contensou's approach changes this variational
problem into one in which no impulses appear. The resulting problem can
then be examined using the extensive theory of the calculus of variations
or optimal control.

The several author's treatments differ in various ways. The
method presented here is intended for illustrative purposes only. Consider

the planar case, where it is desired to transfer from some initial orbit




with semimajor axis a, and eccentricity e. to a final orbit with semimajor

1 1

axis a5 and eccentricity €y with the angle between the lines of apsides
being w, The line of apsides is assumed to point in the direction of the
pericenter,

If a vehicle is moving under the influence of a Keplerian force
field and its own thrust, its motion at any time may be described in terms
of an "instantaneous" or "osculating' ellipse with semimajor axis a, eccen-
tricity e and line of apsides direction w, If no thrust were applied, then
a, e, and w would remain constant, If thrust is acting, then a, e, and w
change with time in accordance with the claseical Lagrange planetary

equations (see, e.g., 40, p. 451).

da _ 2a3/2 Ue sin £ + W(1 + e cos f)
2.1.2.1-1) IS T —m=
2
'\/u(l -e)
N : 2
2.1.2.1-2) de _"\Ja(l -~ e) |U sin £+ W(2 cos £+ e cos” f + e)
e dt ' n (L + e cos f)
. 2, !
aw Eﬁl;;jil_ i -U cos £+ W sin £{2 + e cos f\
2.,1.2,1-3) = | — s
dt 2 | 1+ e cos fl
pe
where
U = radial component of thrust acceleration (positive outward)
W = azimuthal component of thrust acceleration (positive forward)
f = true anomaly
p = gravitational constant (product of universal gravitational

constant and the mass of the
central body).
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To make a complete set of equations, it would be necessary to
specify f as a function of t, and this would require the addition of
another equation for an orb;tal element, e.g., the time of pericenter
passage. Since time is immaterial in this problem, however, it will not
be necessary to do this.

From equation (1.2-5), the rate of change of the characteristic

velocity is

2.1.2,1-4) —— =a-= U2 + W .

Now ccmes the essential part of the process., Since V is a
non-decreasing function of t, and since t is of no concern, it is possible
to make a change of independent variable from t to V. The planetary equations

then become

3/2
2.1,2.1-5y Sa.__2a

.[e sin 6 sin f 4+ cos 8 (L + e cos fﬂ
dv

b - ez)

o a . (1 + e cos £)

2.1.2.1-7) dw _ a(l - e22 (-— sin © cos £ + cos O sin £ /2 + e cos ﬁgz
av uez L \1 + e cos f/;

where € is the angle between the thrust direction and the location horizontal

(positive when thrust is above the local horizontal). Clearly

W
2.1.2,1-8) sin 6 = ——-—ll————ﬁ ; €08 8 = ————or .

N A
U2+W ‘\/U—z-sz

This is now an optimal control problem of a common type. Find

the-controls 6 (V) and f£(V) which take the system from a = a1, €= e, and

w = W, to the desired final conditions a = a e =

25 w = wz in minimum V,

62)




In this version, there are no impulses appearing. Impulsive
thrust in the original problem will appear as a finite interval of V
over which f has a constant value., Continuous thrust will appear as a
finite slope in the function £(V). So, despite the fact that either
impulsive or continuous thrust can be represented, this transformed
problem does not itself contain impulses, and standard theofy can be
applied.

To make this transformation, it is absolutely essential that
the time of the transfer be free,

When approaching the problem in this way, it is not necessary
to specify in advance whether the thrust will be impulsive, and if so,
how many impulses there will be., Such assumptions were necessary in
all earlier work on orbit transfer problems. The results now rest on
a much better foundation.

Prior to the development of this approach, work on the general
problem was either an application of numgrical minimization with a specified
number of impulses (68), analysis of some reasonable postulated maneuver (10),
or determination of some properties of the solution (144).

2.1,2.2. Special Cases. Prior to the development of the general

theory described in the preceding section, many studies were done under
various restrictive hypotheses. In most of these, the assumption of
impulsive thrusting was made at the outset, and, in most, the number of
impulses was fixed a priori as well. Furthermore, in some studies, the
points of application of the impulses was given also.

Despite these limitations, the work is still of interest. In
many cases it can now be stated that the results are truly optimum under
certain conditions. Also, some of the studies are more specific and

thorough, within their limits, than the general results cited above.
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2,1.2.2.1. One orbit is circular, As mentioned above, since
time is free, if one orbit is circular, the orientation of the elliptic
orbit is not material. Thén three parameters suffice to specify the
problem: the radius of the circular orbit, and the semimajor axis and
eccentricity of the elliptic orbit, ?his can be reduced to two parameters
by, for example, normalizing the problem so that the radius or the angular
momentum of the circular orbit is unity. Then the optimal maneuver can be
displayed in a plane as a function of only two variables.

This special case is treated, using the Contensou method, by
Winn (152) and Moyer (103). Moyer gives a complete solution to the
problem based, in part, on numerical integration of the state and multiplier
equations. He finds only two types of minima: two-impulse transfers and
transfers via infinity. The finite three-impulse transfer does not appear,
This is consistent with Marchal's result that the finite three-impulse
transfer cannot occur unless the sum of the eccentricities of the initial
and final orbits is greater than 1,712, 1If one of the orbits is circular,
it is not possible for this condition to be met, so the finite three-impulse
optimum is not to be expected.

Moyer plots his results in terms of h, the angular momentum of
the elliptic orbit (angular momentum of the circular orbit is made equal
to unity) and e, the eccentricity of the elliptic orbit. There is one
region in this h-e plane where the optimum transfer is by two impulses,
with all thrusting done at the apsides of the transfer ellipse. The
transfer ellipse is tangent to both the initial and final orbits., This
is sometimes called a Hohmann transfer or "Hohmann-type' transfer, though

Hohmann himself only considered the case of two circular orbits.
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The remainder of Moyer's h-e plane corresponds to transfers
via infinity. The two parabolas are tangent to the initial and final
orbits and the finite impulses are both applied in the plane of action.

Moyer also shows that there are cases in which the two-impulse
Hohmann-type transfer is not even a local minimum. This is important im
evaluating earlier work which assumed that in all cases only two impulses
would be used.

Winn (152) also uses.Contensou's method of formulating the
equations, but his argument is all analytical and proceeds somewhat
differently, He does not completely solve the problem, though it appears
that the complete solution could be argued from the material he presents,

The papers by Rider (122) and Munick (105) are illustrative of
earlier work, Rider assumed that transfer will be along an ellipse which
is tangent to both the initial and final orbits, and that two impulses
will be used. The only thing to be optimized is the point on the ellip-
tical final orbit at which the tangency occurs.

Munick (105) uses the assumption, now known to be untrue in
some cases, that the Hohmann transfer is the optimum circle-to-circle
transfer to show that the Hohmann-type transfer is optimum for circle-
to-ellipse transfers.

Silber (132) presents extensive numerical results for the
problem of transferring from an inner circular orbit to an outer elliptical
orbit, using two impulses. Departure from the circular orbit is assumed

to be tangential.




2.1.2.2,2. The transfer ellipse is tangent to both the initial
and final orbits., If it is assumed that the transfer will be by means of
two impulses with an ellipfic intermediate orbit which is tangent to both
initial and final orbits, then it is possible to look for the minimum-fuel
transfer subject to these restrictions,

While there are cases where this type of transfer is the true
optimum (e.g., the Hohmann maneuver), it is not, in general, the true
optimum (144). There are cases, however, in which it is possible to
show that cotangential transfers are nearly optimum (71, 134)9( This type
of maneuver has been studied by a number of authors (e.g., Lawden (71),
Smith (134), Bender (10), and Wen (150), The properties have been rather
extensively investigated, both by analytical and numerical methods, In
the light of current knowledge, it appears that cotangential transfers,
while relatively easy to analyze, are not competitive (from the fuel
standpoint) with the true optimum except in those cases where the true

optimum is a two-impulse transfer,

2,1,2,2,3, Initial and final orbits are ellipses with the same
line of apsides., Horner (60) and Ting (138) have studied two-impulse
transfers between elliptic orbits. They found that the best orientation
for the two orbits is for both ellipses to have the same line of apsides,
They also find that, if this is true, the optimum two-impulse transfer is
between apsides of the initial and final orbits and that the transfer
ellipse has the same line of apsides as the initial and final orbits.

This means that, if transfer is to be made between two ellipses
of arbitrary orientation, the amount of fuel used will not be less than

that required for the same two orbits with the lines of apsides coincident.




Lawden (82) studied this problem under the assumption that
two impulses would be used. Dickmanns (28) gives an interesting way
of plotting the results of'this problem. Winn (152) considers the
co-apsidal transfer problem using the Contensou method. He confines
himself to the case where the pericenter of the initial and final
orbits lie on the same line, but are on opposite sides of the attracting

center.

2.1¢2,2,4, Only the line of apsides is to be changed, If
the initial and final orbits have the same semimajor axis and eccentricity
and only differ in their apsidal directions, then the optimal two-impulse
transfer may be determined, Lawden (72, 82) did this, and also studied
the one-impulse transfer for this case., The one-impulse transfer took
considerably more fuel than the two-impulse in the case he presented,

Marchal (94) studied the same problem from a more general point
of view., He states that there are two possible types of optimal transfers:

(a) the two-impulse one studied by Lawden, and (b) a four-impulse transfer

via infinity.

The four-impulse maneuver uses two finite impulses and two
infinitesmal ones., The first (finite) impulse is used to transfer from
the pericenter of the initial orbit to a parabola., At infinity, two
infinitesmal impulses are used to transfer to a second parabola whose
pericenter is coincident with the pericenter of the second ellipse. The
final (finite) impulse is applied at this common pericenter to transfer

from the second parabola to the final ellipse.
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Marchal (94) does not completely resolve the question of when
each of the two types of maneuvers are optimal, but he does state that
if the (common) eccentricit& of the initial and final orbits is less
than 0.53533 then the two-impulse maneuver is better than the four-

impulse maneuver,

L]
2.1,2.2.,5. Initial and final orbits are nearly tangent. In

this case, special difficulties arise in numerical computation of optimal
transfers, McCue and Bender (100) consider this problem and give extensive

references to related work.,

2,1.3. Transfers Involving Parabolic or Hyperbolic Initial or Final Orbits

2,1,3.1, Initial and Final Orbits are Both of Non-~Negative

Energy. One of the more unexpected results in analyzing space maneuvers
is the following: if the initial and final orbits are both of non-negative
energy (they arc either parabolic or hyperbolic) and the force field is
pure inverse-square and the time for transfer is unrestricted, then the
transfer can always be accomplished (theoretically) with zero fuel.

These zero-fuel trajectories are unrealistic in that they involve
either performing maneuvers infinitely distant from the attracting center,
or approaching within zero distance of the attracting center or both,
However, these trajectories are the solutions to the mathematical problem
of minimizing fuel in an inverse-square field,

Edelbaum (34, 37) suggested a maneuver consisting of six infini-
tesmal impulses to transfer from one hyperbolic orbit to another. In His
maneuver, four of the impulses are applied at infinity, and two are applied
infinitesmally close to the attracting center. This requires, of course,

an infinite time.
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A more comprehensive treatment of the problem is given by
Ivanshkin (63), who uses some elements of the Contensou approach together
with the notion of a minimizing sequence. From the mathematical standpoint,
this is a much more satisfactory way to discuss these abnormal trajectories,
Rather than talking about "impulses at infinity" or "impulses at zero radius',
he constructs sequences of trajectories, FEach trajectory iﬁ the sequence
has impulses applied farther out and closer in than the one preceding it.

He then considers the characteristic velocity required by each of these
trajectories, and finds the lower limit of this characteristic velocity.
This limit exists, even though the trajectory corresponding to the limiting
value does not exist in the usual sense., Using this method of argument,
Ivanshkin (63) obtains the result stated at the beginning of this section.

The optimal maneuvers obtained by this method do not satisfy
one or more constraints which would be present in real-world maneuvers.
Since zero fuel is required in the absence of the constraints, it follows
that the amount of fuel which will be required in an actual maneuver will
depend entirely on the constraints themselves. Several authors have con-
sidered various constraints and found optimal constrained maneuvers which,
of course, have non-zero fuel requirements.

Friedlander and Harry (45) considered the problem of correcting
the pericenter of a hyperbolic orbit, It was assumed that a vehicle was
approaching a planet along a hyperbola whose point of closest approach
to the planet was different from the desired value. 1In the absence of
constraints, an infinitesmal impulse, applied at an infinite distance

would correct the pericenter., If, however, the impulse must be applied
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at a finite distance, then that distance should be as large as possible.
Once the maximum distance is established, then the problem is to select

the impulse direction and ﬁagnitude which will accomplish the correction
with minimum fuel, This is the problem solved by Friedlander and Harry.

Marchal (95) has considered the problem of transferring from
one hyperbola to another with time free under the restriction that the
trajectory must always remain a certain finite distance away from the
attracting center., Impulses at infinity are still permitted, but impulses
infinitesmally close to the center are not, He finds that the optimum
thrusting program is always impulsive, that there are never more than two
impulses of finite magnitude, and that there are cases where only one
impulse is used. He gives a complete description of the parameter values
for which various types of maneuvers are optimal.

Gobetz (50) considered the same problem from a more simplified
point of view. Suppose that the hyperbolic excess velocity and direction
of the asymptote is given before an encounter of a spacecraft with a planet
and that the same quantities are specified afterwards, He compares the
optimum one-impulse maneuver with a four-impulse maneuver (two of the
impulses are infinitesmal) which was suggested by Edelbaum®s (34,37)
six-impulse maneuver, The same four-impulse maneuver was considered by
Marchal (95). Gobetz found that either the one- or four-impulse manecuver
might be optimum, depending on problem parameters, For the results pre-
sented, the difference in fuel requirements for the two maneuvers never

exceeds about 20%, and in most cases it is less,
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2,1,3.2. Circle-to~Hyperbola and Ellipse-to-Hyperbola Transfers.

The circle-to-hyperbola problem is nearly as old as the Hohmann transfer,
In 1929, Oberth (113) considered the problem of escaping from a circular
orbit. He suggested that it would be advantageous to drop out of the
circular orbit by decreasing velocity. Then, at the pericenter of the
resulting orbit, an accelerating impulse is applied. Oberth, however,
did not make a particularly thorough investigation., Lawden (73) studied
the same maneuver, and showed that unless the hyperbolic excess velocity
desired was rather large, it was more economical to escape directly via
a single tangential accelerative impulse.

Edelbaum (32) carried the problem further by proposing a
three~impulse maneuver, The first impulse is a tangential acceleration
from the circular orbit, transferring the vehicle to an elliptic orbit
with pericenter on the original circular orbit and with apocenter outside.
When the vehicle reaches apocenter; a2 tangential decelerating impulse
is applied, transferring to an elliptical orbit whose pericenter is as
close to the center of the attracting body as possible. At the pericenter
of‘this second elliptic orbit an accelerating impulse is applied tangentially,
transferring the vehicle to the desired hyperbolic orbit. The one-, two-, and

three~-impulse maneuvers are indicated schematically in Figure 2.1.3.2-1,

a) One-TImpulse b) Two-Impulse ¢) Three-Tmpulse
(Oberth-~Lawden) (Edelbaum)

FIGURE 2.1.3.2-1. CIRCLE-HYPERBOLA TRANSFERS
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Edelbaum (32) compares all three maneuvers and finds that the
three-impulse maneuver is always more economical than the two-impulse.

Furthermore, if the apocenter where I, is applied is made sufficiently

2
large, the three-impulse maneuver can always beat the one-impulse. The
three-impulse maneuver is better as the apocenter of the elliptic orbits

is increased, and as the pericenter of the second elliptic drbit is

decreased,

The limiting maneuver would be to transfer from the circular
orbit to a parabolic orbit. Then, at infinity, an infinitesmal impulse
would transfer the vehicle to an orbit coming infinitesmally close to
the attracting center, At the pericenter of this orbit, an infinitesmal
impulse would transfer the vehicle to any desired hyperbolic trajectory.

This last maneuver would be practically limited by the finite radius of
the attracting center and its atmosphere,

Edelbaum (32) shows plots of the characteristic velocity required
for all three types of manecuvers for some reasonable cases, If the attracting
center can be approached rather closely, then the three-impulse maneuver can
provide arbitrarily large savings in fuel if the required excess velocity is
sufficiently large.

In the limit, if the attracting center can be approached arbitrarily
closely, the three-impulse maneuver requires a characteristic velocity equal
to that required to escape (via a parabola) from the circular orbit. The
one~-impulse maneuver requires this velocity and, in addition, the desired

hyperbolic excess energy must be added at the same time,
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These results are consistent with those of Ivanshkin (63)
mentioned earlier. He considered the ellipse-to-hyperbola problem, of
which the circle—to-hyperboia is a special case. Since it is possible
to transfer freely among parabolic and hyperbolic trajectories, it_is
only necessary to transfer from the ellipse to a parabola. After
reaching infinity, it will then be possible to transfer to ény desired
hyperbola at a cost of only infinitesmal amounts of fuel,

The optimal way to transfer from an ellipse to a parabola is
by means of a single tangential impulse applied at the pericenter of the
ellipse. The amount of characteristic velocity required is merely the
difference between the pericenter velocity for the ellipse and the escape

velocity at pericenter altitude,

2.1.4., Transfers Involving Terminals

There are a variety of transfer problems where either the initial
or final state of the vehicle is not specified as lying on a given orbit.
Rather, some different type of statement is made about it. For example,
the initial position and initial velocity or, perhaps, only the initial
position may be given. Such non-orbital specifications are sometimes called
"terminals"; however, usage of this term is not uniform in the literature.
In some cases, a problem involving a terminal may be thought of as an
orbital transfer, but in others, it cannot,

This class of problem has received much less attention than
orbital transfers, and complete results comparable to Marchal's (93) for
the coplanar problem have not been obtained in any case.

Two problems of this type were stated by Vargo (142). 1In the

first, the initial position and velocity,as well as the final position
> p y P
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and velocity, were given. The problem was to find the two-impulse magni-
tudes and directions which would transfer the vehicle from the initial
condition to the final condition with minimum characteristic velocity.
It was assumed that there wéuld be two impulses, one applied at each end
of the transfer trajectory. The initial and final velocity vectors were
required to lie in the plane defined by the initial and final positions
and the attracting center, so that the entire problem was coplanar.

Vargo's second problem, the only one for which he presents
any results, is a related one in which the initial and final positions
are not completely specified. Only the distances from the attgacting
center are given., The problem is still coplanar. The initial and final
velocities are specified as to magnitude and direction with respect to
the local horizontal, For this problem, Vargo gives a computational
method and some numerical results for one specific case, An analytical
method for solving the second problem was given by Munick, McGill, and
Taylor (106, 107, and 108), The complete solution in closed form is
given by Horner (59).

Vargo's first problem was considered by Altman and Pistiner (1).
They derived an eighth-order algebraic equation whose solution would give
the sblution to the problem, and obtained the solution in a special case.
Pines (116) derives a similar result by an entirely different approach.

Stark (135) considered a variation of Vargo's first problem in
which the initial position and velocity were given, but only the final
position. The final velocity is free, This leads to a fourth-order,
rather than eighth-order, algebraic equation to be solved.

Horner (61) considers a variation of Vargo's second problem.
He found the solution to the problem of transfer from a terminal radial
distance and velocity to an orbit, For the cases he treats, he finds

the complete solution in closed form.
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Ting and Pierucci (139) studied the same problem with the
exception that the two impulses are allowed to have different specific
impulses, and the problem is to minimize Lhe vehicle mass change, rather
than the characteristic velocity.

A related problem was considered by Leitmann (86). He required
the final orbit to be circular (Ting and Pierucci allowed ellipses) and
permitted an out-of-plane initial velocity component, He also allowed
different specific impulses for the initial and final thrusts.,

Finally, there are a variety of transfer problems associated
with atmospheric reentry. The objective here is to transfer from an
initial conic orbit of some kind to some terminal condition. Most
studies assume a single-impulse transfer, and a number of different types
of terminal specifications have been considered (3, 5, 44, and 46).

One study which deserves special mention is the recent report
by Vinh and Busemann (145). They first consider several problems under
the usual one-impulse assumption, Then, they consider the question of
the absolute optimum, without restriction on the number of impulses and,
initially, without assuming that impulsive thrust is optimal, They use
the Contensou method, mentioned earlier, to show that the thrust should

be impulsive and to deduce the form of the optimal maneuver in some cases.

2.2, Coplanar Rendezvous and Minimum-Time Transfers

In the problems of the preceding section, time was not restricted

in any way. In effect, it was not even considered as a part of the formulation.

In this section, problems are considered in which time is important to some degree.
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There are several types of such problems. It is helpful to
distinguish some of these: (a) time-free remndezvous (a vehicle in one
orbit must either collide or rendezvous with a vehicle in another orbit,
but the time required to do this is immaterial); (b) fixed-~time rendezvous
(a definite period is allotted for the maneuver); (c) minimum-time transfer
or rendezvous; (d) fixed-time transfer, In each of these, it is possible
to formulate meaningful minimum-fuel problems, and all have been studied,
at least to some extent, except the last, The results available for the

first three problems are reviewed in the following,

2.2.1, Time-Free Rendezvous

Suppose that a vehicle is initially on one orbit, and with some
specific phase on that orbit. In other words, the position along the orbit
is fixed as a function of time, The vehicle is to be transferred to another
orbit and to some similarly fixed phase on the new orbit, The time required
to do this is completely free. Under these rules, it is desired to accomplish
the change with minimum characteristic velocity.

It has been recognized by a number of researchers that this type
of rendezvous can be accomplished, at least in many cases, with the same
amount of fuel as a time-free transfer between the same two orbits, It
may be that a greater number of impulses is required, but the amount of
fuel may be the same.

To illustrate this, consider a vehicle in a circular orbit about
a planet. It is desired to move this vehicle to a rendezvous with another

craft in a higher coplanar circular orbit about the same planet. If it




were not for the phasing problem, the minimum-fuel maneuver would be the
Hohmann transfer, A Hohmann transfer, initiated at some arbitrary time,
would reach the desired final orbit, but, in general, not at the correct
time.

Note, however, that the vehicle which is in the lower orbit has
a rate of rotation about the attracting center which is different from
that of the vehicle in the higher orbit, From this, it follows that the
angle between the two radius vectors will go through all possible values
if a sufficiently long period is allowed. There will be one value of this
angle, such that, if a Hohmann transfer is initiated at that value, rende-
zvous will be achieved. The desired value of the relative orientation was
found by Paiewonsky (114).

The fuel~optimum rendezvous would proceed as follows, Do nothing
until the relative orientation of the two satellites has the desired value.
At that time, initiate a standard Hohmann transfer. At the end of the
transfer, the two vehicles will have the same position and velocity.

This, of course, requires no more fuel than the simple Hohmann transfer.
The only price paid is the additional waiting time.

There are, in fact, an infinite number of ways to perform this
rendezvous with the same amount of fuel., The Hohmann maneuver involves
raising the orbit apocenter to its final value in a single step. This
could be done in any number of steps for the same fuel, For example,
on departing the circular orbit, an accelerative impulse could be applied
which would transfer the vehicle to an elliptic orbit whose apocenter was
between the two circular orbits, At the next pericenter passage, another
impulse could be applied, raising the apocenter higher, but not to the
outer orbit, On the next pericenter passage, a third impulse could be

applied, raising the apocenter to the desired final orbit. On reaching
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the desired apocenter distance, another impulse would inject the vehicle
into the final orbit. If this four-impulse maneuver is started at just
the right time, rendezvous!would be achieved.

Van Gelder, Beltrami, and Munick (141) studied a similar problem
of rendezvous when one of the orbits is circular and the other is.elliptical.
They consider the use of intermediate '"parking'" orbits which bring the two
satéllites into the desired phase relationship.

Billik and Roth (11) and Brunk and Flaherty (17) consider various
ideas which make it possible to shorten the waiting time withoét increasing
the fuel requirements excessively. The study of Schneider, et al, (131),
has about the same approach, though the objective is to provide logic for

a guidance computer,

2.2.2. Fixed-Time Rendezvous

1f the motion of the two vehicles along their trajectories is
uniquely determined with respect to time, and if the time period for the
rendezvous maneuver is completely specified, then, in effect, the position
and velocity of the maneuvering vehicle are completely specified at both
ends of the time interval. A fixed time transfer between completely-
specified terminals is required,

At least two impulses will be needed to perform this maneuver.
If two impulses are used, then there is no minimization problem. There
is, in general, only one trajectory meeting all the requirements, and
that trajectory completely determines the fuel used, Determination of
this trajectory is known as Lambert's problem. It is discussed by Battin (9),

who gives additional references, and by Lim (89).
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This two-impulse transfer is widely used in interplanetary
mission planning studies to survey exhaustively a range of departure
dates and flight times, This involves, however, an assumption that two=-
impulse transfers are optimal, and it is by no means possible to assert
that this is always the case. A more general point of view is taken by
Prussiné (119) . He considers the problem of rendezvous in a fixed time.

The target vehicle is in a circular orbit and the maneuvering vehicle

is close to the circular orbit in both position and velocity. The problem
is restricted to the plane of the target orbit, Since all maneuvering is
done in the vicinity of a circular reference orbit, Prussing linearized
the equations of motion. Then, he applied Lawden's method, analyzing the
behavior of the primer vector to find where the impulses are applied.

Prussing gives the results for the problem of transferring
from one point on a circular orbit to another point on the same circular
orbit in a fixed amount of time. The two-impulse solution has a singuiarity
near 500° of orbital position change. Near this viecinity, Prussing shows
that the use of four-impulse maneuvers eliminates the singularity completely,
This is illustrated in Figure 2.2,2-1 where t is the time allowed for the
maneuver, and AV is the characteristic velocity required.

Prussing also gives a partial definition of the circumstances .
under which various types of maneuvers are optimal. This is shown in
Figure 2.2.2-2 where t is again the time allowed (expressed in orbital
periods) and © is the initial angular separation between the target and
maneuvering vehicles. In this case, the maneuvering vehicle is initially
in a circular orbit of radius different from the target orbit. The '"Hohmann
coast" is a two-impulse transfer with a wait. The transfer can be accomplished

with a Hohmann mancuver in less time than is allowed in the problem.
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These numbers of impulses are consistent with the results of
Neustadt (109) and Potter and Stern (118) who showed that, for this
problem, the maximum number of impulses would be four,

Since this is a simple circle—to—circle rendezvous, it seems

clear that, in general, fixed time problems may be rather complex.

2.2.3., Minimum-Time Transfer

The problem of minimizing the time does not make sense unless
some other constraint is applied. If an unlimited amount of fuel is
available, and if it can be burned impulsively, then it should be .
possible to make the maneuver time as short as one pleases (so long
as Newtonian mechanics apply). The most logical type of constraint to
impose may be that of limiting the amount of fuel available, and minimizing
the time under that restriction.

A problem of this type has been considered by Wang (148), but
this appears to be the only such study reported, The scarcity of work
in this area is perhaps due to the fact that minimum-fuel problems are

still of major practical interest.

2.3. Non-Coplanar Time-Free Transfers

The current status of this problem is much less satisfactory
than that of the coplanar case. Most of the results which have been
obtained for this type of transfer have been based on the assumptions:
(a) the optimal thrust program is impulsive; (b) the number of impulses
and their points of application (and, sometimes, their direction) can be
specified in advance. Some authors have used more than one impulse

scheme and compared the fuel used by each.




45

Three recent papers by Winn (152), Busemann and Culp (19), and
Marchal (94), promise a more comprehensive approach. All make use of
three-dimensional versions of Contensou's method which can be generalized
rather directly. Busemann and Culp (19) present a number of qualitative
conclusions which can be derived rather easily by the variational method.
Winn (152) formulates the non-coplanar problem, but does little more than
begin the solution,

Marchal's treatment (94) is the most extensive, He considers
several specific problems and gives some indication of the ciréumstances
under which various maneuvers would be used. It seems probable that further
results will be forthcoming using this type of analysis,

In the following paragraphs, earlier work on this problem is
reviewed, This work is interesting and suggestive, despite the fact
that none of the results can be affirmed to be absolute minima for the
general problem. The linearized theory (109) suggests that the optimum
number of impulses may go as high as five, for this problem., No studies

to date have examined more than three impulses,

2.3.1, Transfers Between Non-Coplanar Circular Orbits

Perhaps the simplest problem of this class is that of rotating
the plane of a circular orbit without changing its radius. Since the
initial and final orbits intersect, it is possible to perform this maneuver
with a single impulse,

Rider (121) suggested that it would be advantageous to use a
three-impulse maneuver instead. The first impulse is applied tangentially
on the initial orbit, transferring the vehicle to an elliptic orbit whose

apocenter is above the circular orbit. At the apocenter of the elliptic
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orbit, the second impulse is applied in such a way as to rotate the plane
of the elliptic orbit to the desired final plane, without changing its
shape, This second elliptic orbit will have its pericenter tangent to
the desired final circular orbit. This pericenter is the point of appli-
cation for the final impulse. Rider (121) showed that this three-~impulse
maneuver is better than the single-impulse maneuver if it is desired to
change the orbit plane by 49° or more. The maximum saving is about 43%
in characteristic velocity if the plane-change is 90°.

Edelbaum (33) showed that it was better to do some of the plane-
change at each impulse, rather than doing it all with the second. If
this is dome, the three-impulse maneuver becomes the optimum for all
plane~change angles, though the saving for angles less than about 50°
is modest, The comparison between one-~impulse and three-impulse maneuvers
as given by Edelbaum (34, 37) is shown in Figure 2.3.1-1.

In Figure 2,.3,1-1, Vo is the circular orbit velocity (dependent
on the central body and ro), AV is the required characteristic velocity
for the maneuver, i is the plane-change desired, r, is the apoceunter of
the optimal transfer ellipse, and r, is the radius of the circular orbit,
As the plane-change angle increases, so does the apocenter of the inter-
mediate ellipses, At about 60°, the apocenter goes to infinity and,
beyond that point, all transfers are via infinity. Notice that for
large plane-changes, the three-impulse maneuver becomes far better than

the one-impulse,
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Wallner and Camiel (146) also considered the plane-change
problem in some detail. 1In a later paper, Rider (123) considered a
more general problem: changing the plane and also the radius of a
circular orbit, He considered four types of transfers: (a) a Hohmann
transfer with all the plane-change performed at the outer orbit; (b)

a Hohmann transfer with part of the plane-change at each impulse; (c)
a bi-elliptic transfer (apocenter outside the outer orbit) with all
the plane-change at apoapse; (d) a bi-elliptic transfer with part of
the plane~change performed with each impulse,

This problem can be completely described by two parameters:
the angle of the plane change and the ratio of the initial and final
radius., Rider (123) compares these types of transfers throughout the
range of possible parameters, and shows the parameter regions within
which the various types are the most advantageous,

Baker (6) considered the same problem introducing, in addition,
consideration of the time required for the maneuver and the phasing or
rendezvous aspects, |

In a recent paper, Roth (128) studied the same problem, from
about the same point of view, but with additional analysis of the mini-
mization problems involved. Hoelker and Silber (55) gave a rather
detailed analysis of a particular problem of this class: transfer from

a low, non-equatorial parking orbit to an equatorial 24-hour orbit.
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2.3.2, Transfers Between Non-Coplanar Elliptic Orbits

Since these maneuvers can always be accomplished with two impulses,
it is natural that a substantial amount of work has been done on a two-impulse
basis, The theoretical work of Eckel (31) and of Lee (84) assumes that two
and only two impulses will be used, Eckel (31) develops and analyzes nec-
essary conditions, somewhat in the spirit of Lawden (83), and reduces the
problem to that of solving three algebraic equations in three unknowns.

Lee (84) starts from a terminal-to-terminal problem, and derives results
for the transfer case.

Numerical investigations of the same problem have been made by
McCue (97), McCue and Hoy (98), and McCue and Bender (99). They use an
adaptive steepest-descent procedure, and show that the functions to be
minimized have rather complex behavior involving multiple minima. Inci-
dentally, they show numerically that two-impulse maneuvers are better
than the "Lawden spiral" in terms of fuel used,

Three-impulse maneuvers have been studied analytically by Hiller
(53, 54) and by Niemeier (112). Hiller (53, 54) assumes the structure of
two- and three~impulse maneuvers and optimizes within that structure, He
finds that two-impulse, finite three-impulse and transfers via infinity all
have their regions of optimality. While he does not point it out explicitly,
his data appear to show that in some cases the finite three-impulse and infinity
maneuvers offer substantial fuel savings over the two-impulse, perhaps amounting
to 50%.

Niemeier (112) studies the problem of changing the plane of an
elliptic orbit of arbitrary orientation, He assumes a certain three-impulse
maneuver: (a) at apocenter of the original orbit, increase velocity to

circular via a horizontal impulse; (b) when the resulting circular orbit



crosses the line of intersection between the initial plane and the desired
final plané, make the entire plane-change with one impulse establishing a
circular orbit in the desifed final plane; (c) when the vehicle reaches
the apocenter of the desired final orbit, a local horizontal retro impulse
will transfer to the desired final orbit.

He finds that the saving of this maneuver over the one-impulse
maneuver increases with the eccentricity of the ellipse, and becomes

arbitrarily large as the eccentricity approaches unity,

2.3.3. Transfers Involving Hyperbolic or Parabolic Orbits

First, consider the case where both initial and final orbits
have non-negative energy. This was discussed for the coplanar case in
section 2.1.3 and the situation is not materially changed here, When
the trajectory goes to infinity, any plane-change can be accomplished at
infinitesmal cost. If the attracting center can be approached arbitrarily
closely, then the entire maneuver can be accomplished at zero cost. If
the attracting center cannot be approached closely, the cost of transfer
will be the same as in the coplanar case, since the plane~change is free,
If it is not possible to go to infinity to perform the maneuver, the
plane-change imposes an additional penalty.

There remains the problem of transferring between an elliptic
and a parabolic or hyperbolic orbit. Again, as in section 2,1.3, if the
attracting center can be closely approached, any ellipse-to-~hyperbola
transfer can be accomplished for only the amount of fuel required to

escape from the pericenter of the ellipse,




Somewhat more practical maneuvers have been considered by
Deerwester, McLaughlin and Wolfe (25) and by Gunther (51), without the
claim that their maneuvers are absolutely optimal in any particular sense,
Both consider circle-to-hyperbola transfer by eifher one- or two~-impulse
maneuvers and compare the fuel requirements of the various modes., In
some cases, the two-impulse requirements are substantially less than

the one-impulse,

2.3.4., Problems Involving Fixed Terminals

It is possible to define terminals in the non-coplanar case
in a manner similar to those defined in section 2,l.4., Altman and
Pistiner (2) and Lee (84) have studied the problem of minimum-fuel two-
impulse time-free transfers between two terminals which are completely
specified in terms of position and velocity. The solution hinges on
the study of an eighth-degree polynomial., The report by Collins and
Wallace (22) is an example of a numerical approach to this type of
problem,

The problem of transferring from a fixed terminal (position
and velocity given) to a circular orbit is considered by Carstens and
Edelbaum (20). They assumed that two impulses would be used, and mini-
mized the fuel requirements within that framework, They were concerned
with launching a satellite into a circular orbit from a point on the
Earth's surface. The launch point did not lie in the plane of the
desired orbit.

Fimple (&2) gives some results which, though not strictly
optimal, are very suggestive of the possibilities that are offered by

multiple~impulse mancuvers. He considers the problem of a planetary
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probe, Leaving the Earth's sphere of influence (position and velocity
given), the problem is to intercept another planet (final position given
but the velocity is free). This can always be done with one impulse, but,
if the orbit of the target planet does not lie in the ecliptic, the one-
impulse fuel requirements become large in some cases. Fimple gives velocity
contours for one-impulse trajectories in the launch date-trip time plane as
indicated in Figure 2.3.4-1, These results are for an Earth-Mars transfer,
and the characteristic velocity. has been normalized against the Earth's
mean orbital speed (EMOS), 97,700 fps.

Notice the very high and steep ridge running diagonally through
the figure, This ridge is a common feature of plots of this sort., These
contours are plotted on the basis of fixed-time trajectories, which will
be treated further in the next section., The original problem did not
involve a fixed-time, so the procedure would be to select a launch date,
then search along the vertical line through that launch date for the trip
time which minimizes the fuel required.

To illustrate the behavior of this ridge, Fimple chooses to
display a cut through the surface along a line of constant trip time of
300 days. This is shown in Figure 2.3.4-2,

If an additional impulse during midcourse is allowed, the ridge
can be eliminated completely. The midcourse impulse used by Fimple cannot
be affirmed as the absolute optimum one, but it is at least illustrative,
Note the interesting similarity between this figure and one of Prussing's
(Figure 2.2,2.-1),

1f either one- or two-impulse maneuvers is allowed, whicﬁever
is better, then the contours of Figure 2.3.4-1 change into those of

Figure 20 3 . 4"3 ©
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Notice that the ridge is now gone and the launch opportunity is
widened., In the shaded area, two-impulse maneuvers are better, and in the
unshaded region, the one—imfulse maneuver is better,

This is a very common situation in mission analysis, and these
results suggest that multiple-impulse trajectories may havevconsiderable
practical significance. ©Notice that, in this example, the minimum
characteristic velocity trajectory has a characteristic velocity of 0.119
EMOS whether the two-impulse maneuver is allowed or not. The absolute
minimum-fuel requirement has not been decreased. However, there is a

very considerable secondary benefit in widening the opportunity.

2.4, Non-Coplanar Rendezvous

Consider first the problem of time-free rendezvous, Just as
in the coplanar case, this can be accomplished with the same fuel as a
transfer, if the time is not restricted,

The fixed-time case is more difficult and at the same time more
useful, If the time of the trajectory is fixed, the problem involves a
fixed-time transfer between non-coplanar terminals (position and velocity
completely specified at each end). In general, this maneuver can be
accomplished with two impulses., If only two impulses are used, the tra-
jectory is uniquely determined by the boundary conditions and there is
no optimization problem involved,

Calculation of these unique two-impulse rendezvous trajectories
has played an important role in interplanetary mission analyses. Several
studies already mentioned have made use of this sort of computation as

part of a larger study (22, 42), Many others could be mentioned, for
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example, Breakwell, Gillespie and Ross (12), Lee and Wilson (85), Tite (140),
and Manning (92). There are many other similar studies which could be
mentioned, |

These studies make use of the minimal number of impulses required
to do the mission, and specify enough boundary conditions on the heliocentric
trajectories so that they are uniquely determined. The optimization comes
from surveying the totality of solutions for all possible flight times, and
selecting the one which requires least fuel,

Since multiple-impulse trajectories are arbitrarily excluded, it
may be questioned whether the trajectories derived by the above process are
the true optima. This question has not been answered as yet, though the
tools for finding the answer seem to be available., It would be necessary
to find the true optima and compare them with the two-impulse optima or
one-impulse optima determined by the usual approach.

Lawden's general theory (83) is certainly applicable here, but
no comprehensive application of it seems to have been made. Lion and
Handelsman (90) have taken a somewhat different approach to the problem.
They consider small perturbations of some non-optimum impulsive trajectory
and develop necessary conditions for the addition of another impulse.

If one of these more comprehensive methods is used, it may be
found that the absolute minimum fuel requirement is not decreased much
compared to the usual one- or two-impulse solutions., It seems possible
that those missions which have been extensively studied are rather well
optimized at present.

Primary benefits of the variational multiple impulse results

may be in two areas: (a) increasing mission flexibility (widening launch
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opportunities); (b) optimizing the more complex maneuvers which have not
received muéh attention,

Apparently, the dnly actual results bearing on this question
are those of Fimple (42) and Prussing (119), cited earlier. Both are
limited in some respects. Prussing's work is single;plane and linearized;
however, within these limits, the optimization is complete, Fimple's work
is only sub-optimal., Still, perhaps these studies give some indication of

what may be expected in the general case,

2,5, Maneuvers Involving Neighboring Orbits

If the initial, final and transfer orbits all lie close to one
another, it is frequently possible to linearize the problem about one of
the orbits, Then, the extensive theory of linear systems may be used to
obtain results much more complete than is possible in the general nonlinear
case,

In this event, the distinction between coplanar and non-coplanar
problems is a rather minor one. It is not much more difficult to do this
linearization in three dimensions than it is in two,

Edelbaum (33) gives an interesting set of formulas for the
minimal characteristic velocity required to change each of the elements
of a nearly circular orbit. Lawden and Long (79) consider the problem
of optimally correcting an interplanetary trajectory which has deviated
from the nominal, The correction is made in such a way as to intercept
the target planet, though perhaps at a different point from the nominal
intercept. Ribarich and Meredith (120) consider a more complicated
problem of the same type, where there may be a number of constrainés on

the terminus of the trajectory.
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Koenke (69) finds the fuel-optimal two-impulse transfer between
two neighbofing circular orbits under the requirement that the transfer
orbit subtend a fixed angle'at the attracting center, He also made numerical
investigations of the range of validity of the linear results.

Eggleston (38) considered transfer from a terminal (positioﬁ and
velocity specified) to a circular orbit, The initial velocity vector lies
in the plane of the orbit, so that the problem is coplanar. He calculated
the minimum fuel required to rendezvous with a vehicle in the circular orbit.
In a later study, Eggleston (39) considered the problem in three dimensions
and considered the intercept problem as well., Hornby (58) considered a
similar problem, except that he also studies the case where the orbit is
not circular, Houboult (62) gives an introduction to rendezvous and surveys
much of the earlier work in the rendezvous problem,

Two recent papers by Marec (96) and Edelbaum (36) give thorough
treatments of the problem of transfer between two neighboring quasi-circular
orbits when the time is free. While the methods of the two differ in many
details, both use a version of the Contensou formulation, and both authors
show that the transfer can always be done optimally with two impulses,

The more general linearized treatment of Neustadt (109) has
already been mentioned. He considers an arbitrary problem (time-free or
not) subject only to the requirement that the equations of motion can be
linearized. ?erhaps the most significant result derived from this study
is the fact that the number of impulses required may be as large as the number

of final parameters which are specified.
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2.6, Penalty Due to Finite Thrust

Impulsive thrust is an idealization. Since it cannot be achieved
precisely in practice, it is useful to consider the penalty for using a
finite but reasonably large thrust. More specifically, the problem is that
of determining how much more characteristic velocity is required on a finite-
thrust maneuver than on an impulsive one.

Several authors have studied or commented on this question, and
all agree that, for thrust levels consistent with chemical rocket propulsion,
the excess characteristic velocity is extremely small., Typical calculations
show fractions iike 10-4%. In view of this, interest in this question has
not been especially high.

Lawden (77), Wang (147), and Robbins (127), give estimates based
on an approximate consideration of the variational problem posed by finite
thrust, Marchal (95) gives an order-of-magnitude estimate also, but does
not state how it was obtained, Numerical investigations were carried out
by Jurovies (64), McCue (102), and Willis (151)., 1In the first two studies,
optimal impulsive solutions are compared with optimum finite thrust solutions,
and the differences in fuel used are very small. In any event, it seems well-
established that the impulsive approximation gives an excellent estimate of
the required characteristic velocity under ordinary circumstances for chemical

propulsion,
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3.0, MULTIPLE ATTRACTING CENTERS

3.1, Two Attracting Centers

Perhaps the simplest generalization of the problem considered
in section 2,0 is that of a vehicle of negligible mass moving under the
influence of two attracting centers, Lunar vehicles and soiar probes are
examples. Judging from the number of published papers, however, this sub-
ject has received little theoretical attention., Vargo (143) published a
qualitative result on the best place to apply impulses to increase the
value of Jacobi's integral. McCue and Bender (101) give a numerical
method for solving the terminal-to-terminal problem (position given)
when the time of flight is fixed. This is simply a two-point boundary
value problem whose solutions either do not exist or are unique, There
is no question of optimization. However, such a computational tool
could no doubt be used in optimization studies in a manner analogous
to the way terminal-to-terminal fixed time transfers are used in inter-

planetary optimization work,

3.2. Three Attracting Centers

Most interplanetary problems fall into this category, and these
have been receiving a great deal of attention during the past several years,
The three bodies involved are the departure planet (Earth in most cases),
the Sun, and the target planet.

The problem of optimally transferring from a circular orbit
around one planet to a circular orbit around another planet was considered
from the variational point of view by Lawden (75, 76) more than a decade

ago, His treatment was somewhat limited in that he assumed the locations
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of the (two) impulses and then constructed solutions which satisfied the

the necessary conditions, In the process of this construction, he made

use of what we now call "patched conic" or "sphere of influence" ideas

in order to get closed-form expressions for the trajectory and the associ-

ated Lagrange multipliers. In this way, the usual difficulties of two-point
boundary value problems were circumvented,

Despite these limitations, the treatment was at least a variational

———————
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one, and as such, potentially more powerful than the methods which are now
in common use. It is not clear to the author why interest in this approach
did not continue. Since Lawden's original investigations, there has been
great progress in both the theory and computation ofvvariational problems.
In view of this, it seems appropriate to revive the search for absolute
optima in interplanetary problems. The principal benefit of this approach
would probably lie in the discovery of trajectories using more impulses than
are now fashionable.

While no absolute optima are known for interplanetary trajectories,
a small number of studies have considered the use of additional impulses

introduced at reasonable, though not necessarily optimal, places (29, 42, 57).

Benefits are observed in some cases and not in others, but the picture is
far from complete, In view of the great interest in and cost for solving
interplanetary problems, it seems reasonable that truly optimal trajectories
should be investigated.
These trajectories are now studied typically by means of a
patchéd—conic method. In other words, at any given time, the vehicle is
[ assumed to be under the influence of only one attracting center, so that

the trajectory is a conic section., These conic trajectories are then patched
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together at somewhat arbitrary points where the vehicle is assumed to pass
from the influence of one body to the influence of another, The point of
application of applied impﬁlses is usually selected in advance, as is the
number of impulses to be used, Only a sﬁall number of parameters are left
free to be selected, and these are usually explored in some systematic
fashion to find the best (usually minimum-fuel) combination, within the
framework assumed, A great amount of work has been done along these lines,
Examples include (12, 85, 92, 140, and 136).

This is clearly not an unreasonable process, For some purposes,
it is entirely adequate, Unfortunately, the framework is too rigid.
Optimization studies performed in this manner can be carried out with
respect to only a small number of parameters, Such an investigation
probably would not be able to locate a six-impulse optimum trajectory, for
example, Six quantities would be necessary to specify the location, direction
and magnitude of each impulse, so that a total of 36 parameters might have to
be found.

It cannot be asserted with any confidence that there are any
interesting4interplanetary problems for which the optimum trajectory has
six impulses. On the other hand, it cannot be asserted with any confidence
that there are not,

The question should be investigated, and it appears that a vari-
ational approach, as pioneered by Lawden would be the appropriate means.
However, numerical approaches would and could now (with modern computers

and techniques) play an essential role.




62

3.3. Four Attracting Centers

If more than two_planets are involved in a maneuver, then four
or more centers must be considered. Swingby trajectories (one planet is
used to add energy to a vehicle on the way to another planet) are examples
of this situation,

The usual mode of analysis in this case is about the same as the
one used on three-center problems (see, for example, 8, 41, 43, 49, 91,
111, 136, and 117), The same opportunities exist for studying these

maneuvers with variational methods,

4.0, STOCHASTIC PROBLEMS: ORBIT CORRECTIONS USING MEASUREMENTS

Up to this point, only what might be called propulsion problems
have been considered, The amount of fuel to be used was a major fractiom
of vehicle weight, Further, it was assumed that perfect information was
available and that desired maneuvers could be performed exactly., In this
section, a class of minimum~fuel problems are considered for which none
of these things are true, These problems are associated with orbit
correction,

After launch, it is necessary, in most missions, to make one or
more corrections of the trajectory., These corrections are based on measure-
ments made either on-board or from the Earth's surface. The measurements
are subject to random errors as are the orbit injection conditions (see
48 for an introduction to the problem). One can then consider the problem
of using this imperfect information to bring the trajectory within some
stated set of tolerances in such a way as to minimize the expected (or

average) amount of fuel used. Since the errors are random, the amount of




fuel needed to correct them will be random also., In general, the amount

of fuel provided may have to be several times larger than the average amount
needed in order to provide ; high confidence that the required fuel will be
available.

This problem involves a stochastic optimization process, This
has been separated into two parts: (a) an optimal estimate of the vehicle
position and veloecity based on the noisy measurements; and (b) an optimal
control program based on this estimate,

The first problem of this type was formulated by Lawden (80).

He assumed that the correction would be by a finite number of impulses,
Further, he assumed that, at the time of application of each impulse,

there was a certain error in the trajectory, and that each impulse would

be designed to eliminate completely the projected error at the end of the
trajectory. He also assumed that there would be errors in execution of the
desired impulses.,

Based on these error sources, he found the number, spacing,
magnitude and direction of the impulses which minimized the total fuel
used, Unfortunately, his treatment of the statistical aspects leaves
something to be desired. He gives no consideration to the second moments
of any error distribution, His result indicates that if all errors have
zero mean, then no fuel will be required for correction, no matter how
large the variances of the errors are, In any event, Lawden formulated
a meaningful problem, and included most of the elements which need to be
considered,

One of the most interesting results in the field is that of

Breakwell and Striebel (13). By using an argument based on Green's
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theorem, they show that the fuel-optimal thrusting program is continuous
and not impulsive. Furthermore, there are periods of zero thrust near

the beginning and end of the trajectory, separated by a period of non-zero
(but finite) thrust. This is the only known instance in the entire space
literature where it has been shown that continuous thrusting is superior
to impulsive, other things being equal, Unfortunately, the Green's theorem
argument does not readily generalize to more complex problems than the one
considered by Breakwell and Striebel,

In a later report Breakwell, Rauch, and Tung (16) give a more
comprehensive method based on optimal control theory and Kalman filtering
(27, 65, and 66) ideas. In the same reference (16), the authors consider
the problem of minimizing fuel under the requirement that the thrust be
impulsive, They find that, if as many as four or five impulses are used,
the fuel used approaches very closely that of the optimum (continuous
thrust) case, However, if only a single impulse is used, the required
fuel may approach four or five times the optimum,

Yaroshevsky and Parysheva (153) consider a similar problem except
that their treatment of the measuring-error problem is much more limited

than Breakwell's, They are concerned with a hyperbolic approach to a

'planet, and study the problem of correcting the pericenter altitude and

also the problem of correcting both the pericenter altitude and the peri-
center velocity., Under their assumptions, they also find that going beyond
about four impulses does not save appreciable fuel, They did not calculate
one-impulse requirements, but the four-impulse cases use only about half

the fuel of the two-impulse ones.
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Breakwell, Tung and Smith (15) show numerical application of both
the continuous (optimal) and discrete (sub-optimal) correction strategies
to interplanetary guidance.problems. Denham and Speyer (26) considered fhe
closely related problem of minimizing the’terminal miss subject to a con-
straint on the amount of fuel available., Their results, however, are not
nearly as complete as are Breakwell's.

Once the guidance-law has been established, it may be tested,
even for large perturbations, using a Monte Carlo simulation, as in

References 21 and 133,

5.0. CONCLUSIONS

5.1, The General Theory

The solution to the general problem of Lawden is not known and
even the form of the optimum thrust program is not known., While progress
in this area is certainly desirable, it is perhaps not essential for obtaining
the results of greatest practical interest,
Computational approaches, based on the theory of Rishel (124)
and Warga (149) or the better-known direct method of Bryson (18) and
Kelley (67) have the potential of determining optimal solutions, regardless

of the number of impulses involved,

5.2. Problems Involving a Single Attracting Center

The theory of time-free transfers is nearly complete, Some details
are still lacking, however, in the non-coplanar case, Of time-fixed problems,
very little is known analytically and most of the computational work has

involved a priori assumptions about the number of impulses to be used. A
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genuine optimal solution to the fixed-time terminal-to~terminal transfer
problem would be of great practical utility. It could replace the usual
Lambert's methods used in interplanetary problems, The small amount of
evidence available suggests that there are cases where multiple impulse

trajectories will save large amounts of fuel,

503, Problems Involving Multiple Attracting Centers

It is fair to say that, in this case, there is no single instance
of a known, demonstrable optimal trajectory. It may be maintained, and
probably correctly, that some known trajectories are rather close to the
optimum, but this cannot be proved,

To get some idea of the opportunities which exist, it would be
useful to wuse a patched-conic approach to a multiple-impulse trajectory
Suppose the problem is to go into orbit around one of the outer
planets and it is advantageous to use Jupiter gravity-assist. This is a
four-center problem., Starting from a circular orbit around the Earth,
the first task is to transfer to a hyperbolic escape orbit proceeding
toward Jupiter, A three-impulse maneuver might be optimal for this
purpose (32, 63). Having escaped the Earth's field, an ellipse~to-ellipse
transfer problem is involved which might require as many as three impulses
(93). Arriving near Jupiter it will be necessary to perform a hyperbola-to~
hyperbola maneuver, which might take as many as four impulges (95) . Leaving
Jupiter, there is another ellipse-to-ellipse transfer with its possible
three impulses (93). Arriving at the outer planet, the final maneuver is
a hyperbola-to-circle transfer which might take three impulses. Putting
all these together, as many as sixteen impulses could be involved. This,

of course, omits the small corrective impulses which would doubtless be
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required prior to the approach to Jupiter and prior to the approach to the

target planet. It might be practically necessary to control other aspects
of the trajectory such as arrival speed or arrival time., This might require

even more impulses.

While it is most unlikely that there actually are sixteen-impulse
optimal trajectories, perhaps this example indicates the dangers of going
too far with the patched-conic idea. It also suggests that there might be
some merit in looking for optimal trajectories with numbers of impulses
somewhat larger than now used,

At present, it appears that this search would have to be done
numerically, The promising computational ideas were mentioned above,
Naturally, it would be best to start with the simpler problems, but a

start can certainly be made.

5.4, Orbit Correction

It seems well established that multiple impulses will materially
reduce the amount of fuel necessary for orbit correction, It appears that
four impulses would bring the fuel requirements reasonably close to the
absolute minimum. The fuel thus saved Qill have to be balanced against

the additional complexity of the multiple burns.

5,5, Combinations of Propulsion and Correction

If the primary propulsion system is used for a multiplicity of
impulses, the possibility arises of doing orbit corrections at the same
time as a major burn. This, in turn, raises the possibility of formulating
both the propulsion and guidance problems as a single stochastic optimization
problem, minimizing the total fuel required to get to the desired target with

the desired accuracy.
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It is offered as an opinion of the author that no benefits would
be derived from this approach which would be consistent with the difficulties
involved, This statement éssumes that launch guidance systems will be used
which are at least as accurate as current ones. If considerably poorer launch
guidance were employed, then, perhaps, a combined approach might offer worth-
while fuel savings., Currently, the impulses requifed for guidance corrections
are so much smaller than for primary propulsion that the guidance and propulsion

problems can be uncoupled without appreciable penalty.

ACR:hlg




(1

(2)

(3

%)

(5

(6)

)

(8)

(9

(10)

(11)

(12)

(13)

69

REFERENCES

Altman, Samuel P. and Pistiner, Josef S.. "Minimum Velocity In-
crement Solution for Two-Impulse Coplanar Orbital Transfer",
ATAA Journal, Volume 1, Number 2, pp 435-442, February, 1963.

Altman, S. P. and Pistiner, J. S.,, Analysis of the Orbital
Transfer Problem in Three-Dimensional Space, ATAA Preprint
63-411, 1963,

Anthony, M. L. and Fosdick, G. E., "Three-Dimension al Pulse
Optimization for Vehicles Dis-Orbiting from Elliptical Orbits",
Astronautica Acta, Volume 9, pp 81-106, 1963,

Athans, Michael, "The status of Optimal Control Theory and
Applications for Deterministic Systems", IEEE Transactions on
Automatic Control, Volume AC-11, Number 3, pp 580-596, July, 1966,

Baker, J. M., Baxter, B, E., and Arthur, P. D. "Optimum Deboost
Altitude for Specified Atmospherlc hntry Angle'', ATAA Jou1na1
Volume 1, Number 7, pp 1663-1665, July, 1963.

Baker, Jerome M., "Orbit Transfer and Rendezvous Maneuvers
Between Inclined Circular Orbits', Journal of Spacecraft and
Rockets, Volume 3, Number 8, pp 1216-1220, August, 1966,

Barrar, R. B., "An Apalytic Proof that the Hohmann-Type Trans-
fer is the True Minimum Two-Impulse Transfer", Astronautica Acta,:
Volume 9, Number 1, pp 1-11, 1963.

Battin, R. H., "The Determination of Round-Trip Planetary Re-
connaissance Trajectories", Journal of Aerospace Science,
Volume 26, pp 545-567, 1959,

Battin, Richard H., Astronautical Guidance, New York, McGraw-
Hill, 1964.

Bender, D. F., "Optimum Co-Planar Two-Impulse Transfers Between
Elliptic Orbits'", Aerospace Engineering, Volume 21, Number 10,
p 44, October, 1962,

Billik, B. H., and Roth, H. L., "Studies Relative to Rendezvous
Between Circular Orbits", Astronautica Acta, Volume 13, Number
1, pp 23-36, 1967.

Breakwell, J. V., Gillespie, R. W., and Ross, S., "Researches in

Interplanetary Transfer'", American Rocket Society Journal,
Volume 31, Number 2, pp 201-208, February, 196l.

Breakwell, J. V. and Striebel, C.T,, Minimum Effort Control in
Interplanctary Guidance, Institute of Aeronautical Sciences Pre-
print 63-80, 1963,




il

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

70

REFERENCES

(Continued)

Breakwell, J. V., "Minimum Impulse Transfer", AIAA Progress in

Astronautics and Aeronautics: Volume 14, Celestial Mechanics and

Astrodynamics, Szebehely, V, G., Editor, pp 583-589, New York,
Academic Press, 1964,

Breakwell, J, V., Tung, F., and Smith, R. R., "Application of
the Continuous and Discrete Strategies of Minimum Effort Theory
to Interplanetary Guidance", ATIAA Journal, Volume 3, Number 5,
pp 907-913, 1965.

Breakwell, John V., Rauch, Herbert E., and Tung, Frank F.,
Theory of Minimum Effort Control, NASA CR-378, January, 1966,

Brunk, W. E. and Flaherty, R. J., Methods and Velocity Require-
ments for the Rendezvous of Satellites in Circumplanetary Orbits,
NASA TN D-81, 1959.

Bryson, A, E,, Carroll, F, J.,, Mikami, K., and Denham, W, F.,
"Determination of the Lift or Drag Program that Minimizes Re-
Entry Heating with Accelervation or Range Constraints", Institute
of Aeronautical Sciences Annual Meeting, New York, January
23-25, 1961,

Busemann, Adolf and Culp, Robert D., An Approach to the Problem
of Optimizing Orbit Maneuvers, NASA CR 83544, University of
Colorado, December, 1966,

Carstens, J, P. and Edelbaum, T. N., "Optimum Maneuvers for
Launching Satellites into Circular Orbits of Arbitrary Radius
and Inclination'", American Rocket Society Journal, Volume

31, Number 7, pp 943-949, July, 1961,

Cohen, J. J. and Leonard, D. C., N-Body Monte Carlo Simulation
of Specific Lunar Orbiter Missions, NASA CR-66055, March, 1966.

Collins, Robert L. and Wallace, Sylvia A., A Computational
Method for Two-Impulse Orbital Rendezvous, NASA TN D-3508,
August, 1966,

Contensou, P., "Etude Theorique des Trajectoires Optimales dans
un Champ de Gravitation. Application au cas d'un Centre d'At-
traction Unique'", Astronautica Acta, Volume 8, pp 134-150, 1962,

Culp, Robert D., “Contansou-Busemann Conditions for Optimal
Coplanar Orbit Transfer', ATIAA Journal, Volume 5, Number 2,
pp 371-372, February, 1967.

Deerwester, J. M,, McLaughlin, J. F., and Wolfe, J. F., "Earth-
Departure Plane Change and Launch Window Considerations for



71

REFERENCES

(Continued)

Interplanetary Missions", Journal of Spacecraft and Rockets,
Volume 30, Number 2, pp 169-174, February, 1966,

(26) Denham, W. F. and Speyer, J. L., "Optimal Measurement and
Velocity Correction Programs for Midcourse Guidance', AJAA
Journal, Volume 2, Number 5, pp 896-907, May, 1965.

(27) Deutsch, Ralph, Estimation Theory, Englewood Cliffs, New Jersey,
Prentice-Hall, Incorporated, 1965.

(28) Dickmanns, Ernst D., "Note on Coplanar Orbit Transfers by
Tangential Impulses at Apse Points'", Journal of Spacecraft and
Rockets, Volume 3, Number 8, pp 1300-1301, August, 1966.

(29) Doll, John R., Three-Impulse Trajectories for Mars Stopover
Missions in the 1980 Time Period, Report F-110398-1, United
Aircraft Research Laboratories, East Hartford, Connecticut,
August, 1967.

(30) Dowlen, E. M. and Seddon, J., "Orbital Rendezvous Techniques",

Journal of the British Interplanetary Society, Volume 19, pp 498-
510, October, 1964.

(31) Eckel, K., "Optimum Transfer Between Non-Coplanar Elliptical
Orbits", Astronautica Acta, Volume 8, pp 177-192, 1962,

(32) Edelbaum, T. N., "Some Extensions of the Hohmann Transfer Maneuver",

American Rocket Society Journal, Volume 29, Number 11,
pp 864-865, November, 1959.

(33) Edelbaum, T. N., "Propulsion Requirements for Controllable Satel-

lites", American Rocket Society Journal, Volume 31, Number
8, pp 1079-1089, August, 1961.

(34) Edelbaum, T. N., How Many Impulses, AIAA Paper Number 66-7,
ATAA 3rd Aerospace Sciences Meeting, January 24-26, 1966,
New York, New York.

(35) Edelbaum, T. N., "Optimization Problems in Powered Space Flight",
Recent Developments in Space Flight Mechanics, Volume 9 in
Advances in Space Science and Technology Series, American
Astronautical Society, Tarzana, California, 1966.

(36) Edelbaum, T. N., "Minimum Impulse Transfers in the Near Vicinity
of a Circular Orbit", Journal of Astronautical Science, Volume
14, Number 2, pp 66-73, March-April, 1967.

(37) Edelbaum, T. N., "How Many Impulses?", Aeronautics and Astronautics,

Volume 5, Number 11, pp 64-69, November, 1967.




SN @GNy SHN GNG SN OGNS OnS AU GG AuS GuS SON OGS JNG UNO GNG OmW OGNS S GO M O

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

72

REFERENCES
(Continued)

Eggleston, J, M., "Obtimum Time to Rendezvous", American Rocket
Society Journal, Volume 30, Number 11, pp 1089-1091, November, 1960.

Eggleston, J. M., A Study of the Optimum Velocity Change to
Intercept and Rendezvous, NASA TN D-1029, 1962.

Ehricke, Krafft, A., Space Flight, Volume 1, Environment and
Celestial Mechanics, Princeton, New Jersey, van Nostrand, D., 1960.

Feitis, Peter H., Trajectory Design for Impulsive Earth-Mars-
Earth Trajectories Launched in 1969 and 1971, NASA CR-80520,
December, 1966.

Fimple, W, R., "Optimum Midcourse Plane Changes for Ballistic
Interplanetary Trajectories", AIAA Journal, Volume 1, Number 2,
pp 430-43%, February, 1963,

Flandro, G. A., "Fast Reconnaissance Missions to the Outer Solar
System Utilizing Energy Derived from the Gravitational Field of
Jupiter'", Astronautica Acta, Volume 12, Number 4, pp 329-337,
July-August, 1966,

Fosdick, G. E., and Anthony, M. L., "Three-Dimensional Pulse
Optimization for Vehicles Disorbiting from Circular Orbits",
Astronautica Acta, Volume 8, pp 343-376, 1962,

Friedlander, A, L. and Harry, D. P., Requirements of Trajectory
Corrective Impulses During the Approach Phase of an Interplanctary
Mission, NASA Technical Note TN D-255, 1960.

Galman, Barry A., "Minimum Energy Deorbit”, Journal of Space-
craft and Rockets, Volume 3, Number 7, pp 1030-1033, July, 1966.

Gaston, Charles A., “Graphical Analysis of Singular Trajectories
for Optimal Navigation", AIAA Journal, Volume 5, Number 9,
pp 1655-1658, September, 1967.

Gates, C, F., Scull, J. R., and Watkins, K. W., "Space Guidance",
Astronautics, Volume 6, Number 11, pp 24-27, 64-72, November, 1961,

Gillespie, Rollin W. and Ross, Stanley, "Venus-Swingby Mode and
its Role in the Manned Exploration of Mars', Journal of Space-
craft and Rockets, Volume 4, Number 2, pp 170-175, February, 1967.

Gobetz, F. W., "Optimum Transfers Between Hyperbolic Asymptotes",
ATAA Journal, Volume 1, Number 9, pp 2034-2041, September, 1963,

Gunther, P,, "Asymptotically Optimum Two-Impulse Transfer From
Lunayr Orbit", AIAA Journal, Volume 4, Number 2, pp 346-352,

February, 1966,




N G N GuE SN SN ont SR OnG A G MED DO AN RN N0 AW N W 00 B W

(52)
(53)
(54)
(55)

(56)

(57)

(58)

(59

(60)

(61)
(62)

(63)

(64)

73

REFERENCES

(Continued)

Gurman, V. I., "Optimum Transfers Between Coplanar Orbits in a
Central Field", Cosmic Research, Volume 4, Number 1, pp 35-58,
June, 1966 (FID-TT-66-76, TT-66-62322, AD-639378).

Hiller, H., "Optimum Impulsive Transfers Between Elliptic and
Non-Coplanar Circular Orbits", Planetary & Space Science,
Volume 13, pp 1233-1247, 1965.

Hiller, H., "Optimum Impulsive Transfers Between Non-Coplanar
Elliptic Orbits Having Collinear Major Axes'", Planetary &
Space Science, Volume 14, pp 773-789, 1966.

Hoelker, R. F. and Silber, R., "Injection Schemes for Obtaining

a Twenty-Four Hour Orbit", Aerospace Engineering, Volume 20,
Number 1, p 28 f£f, January, 1961.

Hohmann, W., Die Erreichbarkeit der Himmelskorper, Oldenbourg,
Munich, 1965. :

Hollister, Walter M. and Prussing, John E., "Optimum Transfer
to Mars via Venus'", Astronautica Acta, Volume 12, Number 2,
pp 169-179, 1966.

Hornby, H., An Analytical Study of Orbital Rendezvous for Least
Fuel and Least Energy, NASA TN D-1207, March, 1962.

Horner, J. M., "Optimum Two-Tmpulse Transfer Between Arbitrary
Coplanar Terminals'", American Rocket Society Journal,
Volume 32, Number 1, pp 95-96, January, 1962.

Horner, J. M., "Optimum Impulsive Orbital Transfers Between

Coplanar Orbits", American Rocket Society Journal, Volume
32, Number 7, pp 1082-1089, July, 1962,

Horner, J. M., "Minimum Impulse Orbital Transfers'", AIAA Journal,
Volume 1, Number 7, pp 1707-1708, July, 1963.

Houbolt, J. C., "Problems and Potentialities of Space Rendezvous",
Astronautica Acta, Volume 7, pp 406-429, 1961.

Ivanshkin, V. V., "Energetically Optimal Transfers From a Hyper-
bolic Orbit in the Absence of Restrictions on Time of Transfer",
Cosmic Research, Volume &4, Number 1, pp 21-34, June, 1966
(FTD-TT-66-76, TT-66-62322, AD-639378). '

Jurovics, Stephen A., Orbital Transfer by Optimum Thrust,
NASA CR-71027, February, 1964.




‘Fgf‘mggf

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

a7

74

REFERENCES
(Continued)

Kalman, R. E., "A New Approach to Linear Filtering and Pre-
diction Problems", Journal of Basic Engineering, Transactions

of the American Society of Mechanical Engineers, Volume 82D,
pp 35-45, 1960.

Kalman, R. E. and Bucy, R. B., "New Results in Linear Filtering
and Prediction Theory', Journal of Basic Engineering, Trans-

actions of the American Society of Mechanical Engineers, Volume
83D, pp 95-108, 1961.

Kelley, Henry J., "Method of Gradients", pp 205-254 in Optimiza-
tion Techniques with Applications to Aerospace Systems, Leitmann,

"George, Editor, New York, Academic Press, 1962,

Kerfoot and Des Jardins, '"Two-Impulse Orbital Transfers",
American Rocket Socicty Preprint 2063-01, 1961,

Koenke, E, J., Minimum Two-Impulse Transfer Between COplanar
Circular Orblts ATAA Paper 66-11, 1966.

Kopp, R. E. and Moyer, H. G., "Necessary Conditions for Singular
Extremals', ATAA Journal, Volume 3, Number 8, pp 1439-1444,
August, 1965.

Lawden, D, F.,, "Optimal Transfer via Tangential Ellipses'",
Journal of the British Interplanetary Society, Volume 11, Number 6,
pp 278- 289 November, 1952,

Lawden, D. F., "The Determination of Minimal Orbits', Journal

of the British Interplanetary Society, Volume 2, pp 216-22 224, 1952,

Lawden, D. F., "Escape to Infinity from Circular Orbits, Journsl

‘of the British Interplanetary Society, Volume 12, Number 2, pp 68~

71 March, 1953.

Lawden, D. F., "Minimal Rocket Trajectories", American
Rocket Society Journal, Volume 23, Number 6, pp 360-365,
November-December, 1953,

Lawden, D. F., "Optimal Transfer Between Circular Orbits About
Two Planets", Astronautica Acta, Volume 1, pp 89-99, 1955.

Lawden, D, F, "Transier Between Circular Orbits", Jet Propulsion,
Volume 26, Number 7, pp 555-558, July, 1956.

Lawden, D, F., "Optimal Escape from a Circular Orbit, "Astronautica
Acta, Volume 4, pp 218-233, 1958.




Cer

(78)

(79)

(80)

(8L)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

75

REFERENCES
(Continued)

Lawden, D. F., "Interplanetary Rocket Trajectories', Advances in
Space Science, Volume 1, Ordway, F. I., Editor, pp 1-53, New
York, Academic Press, 1959,

Lawden, D. F. and Long, R. S., "The Theory of Correctional
Maneuvers in Interplanetary Space', Astronautica Acta, Volume
6, pp 48-60, 1960.

Lawden, D. F., "Optimal Programme for Corrective Maneuvers",
Astronautica Acta, Volume 6, Number 4, pp 195-205, 1960.

Lawden, D, F., "Optimal Intermediate Thrust Arcs in a Gravita-
tional Field", Astronautica Acta, Volume 8, pp 106-123, 1962,

Lawden, D. F., "Impulsive Transfer Between Elliptical Orbits'",
Ootlm17atﬂon Techniques with Apvlications to Aerospace qutpms,
Leitmann, Goerge, Editor, pp 323-350, New York Academic Press,
1962,

Lawden, D. F.,, Optimal Trajectories for Space Navigation, London,
Butterworths 1963,

Lee, Gentry, "An Analysis of Two-Impulse Orbital Transfer', ATAA
Journal, Volume 2, Number 10, pp 1767-1773, October, 1964.

Lee, Vernon A, and Wilson, Sam W,, Jr., "A Survey of Ballistic
Mars-Mission Profiles'", Journal of Spacecraft and Rockets,
Volume 4, Number 2, pp 129-142, February, 1967.

Leitmann, G., "Establishment of a Circular Satellite Orbit

by Double Impulse', Journal of the British Interplanetary Society,
Volume 17, pp 194-198, 1959- 60.

Leitmann, George, '"The Optimization of Rocket Trajectories -
A Survey'", Progress in the Astronautical Sciences, Volume 1,
Amsterdam, North Holland Publishing Company, 1962

Leitmann, George, '"Rocket Trajectory Optimization", Applied
Mechanics Reviews, Volume 18, Number 5, pp 345-350, May, 1965.

Lim, Wai K., "A New Solution to Lambert's Problem ", Review of
NASA Sponsored Research at the Experimental Astronomy Laboratory,
Stern, Robert G., Editor, pp 13-18, Jdnuary, 1967, NASA CR-84291
PR-3.

Lion, P. M. and Handelsman, M., The Primer Vector on Fixed-Time
Impulsive Trajectories, AIAA Paper Number 67-54, 1967.




(o1)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

76

REFERENCES
(Continued)

Luidens, Roger W., Miller, Brent A., and Kappraff, Jay M.,
Jupiter High-Thrust Round-Trip Trajectories, NASA TN D-3739,
December, 1966, ‘

Manning L. A., Minimal Energy Ballistic Trajectories for
Manned and Unmanned Missions to Mercury, NASA TN D-3900, April,
1967, '

Marchal, C., "Transferts Optimaux Entre Orbites Elliptiques
Coplanaires (Duree Indifferente)'", Astronautica Acta, Volume 11,
pp 432-445, November-December, 1965.

Marchal, C., "Transferts Optimaux Entre Orbites Elliptiques
(Duree Indifferente)', XVI IAF Congress, Athens, 1965,

Marchal, Christian, "Optimal Transfer Between Hypcrbolic Asymp-
totes when the Planet has a finite radius", 12th International
Astronautical Congress, Madrid, October, 1966 (also ONERA TP-291).

Marec, Jean-Pierre, Transferts Infinitesmaux Impulsionnels
Economiques Entre Orbites Quasi-Circulaires Non-Coplanaires,
ONERA Publication 115, Paris, Office National d' Etudes et de
Recherches Aerospatiales, 1966,

McCue, G. A., "Optimum Two-Impulse Orbital Transfer and Ren-
dezvous Between Inclined Elliptical Orbits', AIAA Journal,
Volume 1, Number 8, pp 1865-1872, August, 1963.

McCue, G. A. and Hoy, R. C., Optimum Two-Impulse Orbital Transfer
Program, NASA CR-83541, 1 August, 1965.

McCue, G. A. and Bender, D. F., "Numerical Investigation of
Minimum Impulse Orbital Transfer'", ATAA Journal Volume 3,
Number 12, pp 2328-2334, December, 1965,

McCue, Gary A. and Bender, David F., "Optimum Transfers Between
Nearly Tangent Orbits", Journal of Astronautical Sciences,
Volume 13, Number 2, pp 72-75, March-April, 1966.

McCue, Gary A. and Bender, David F., Satellite Orbit Transfer
Studies (Final Report) Report SID 66-1224, North American Avia-
tion, Inc., Space and Information Systems Division, August, 1966,

McCue, Gary A., "Quasilinearization Determination of Optimum
Finite-Thrust Orbital Transfers", ATAA Journal, Volume 5, Number
4, pp 755-763, April, 1967.

Moyer, H. G., "Minimum Impulse Coplanar Circle-Ellipse Transfer'",
ATAA Journal, Volume 3, Number &4, pp 723-726, April, 1965.




(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

77

REFERENCES
(Continued)

Moyer, H. G., '"Necessary Conditions for Optimal Single-Impulse
Transfer", ATAA Journal, Volume 4, Number 8, pp 1405-1410,
August, 1966,

Munick, H., "An Optimum Transfer Path from an Elliptical Orbit
to a Higher Energy Circular Orbit'", American Rocket
Society Journal, Volume 29, Number 6, pp 449-451, June, 1959.

Munick, H., McGill, R,, and Taylor, G. E., "Minimization of
Characteristic Velocity fro Two-Impulse Orbital Transfer",
American Rocket Society Journal, Volume 30, Number 7,

pp 638-639, July, 1960.

Munick, H., McGill, R., and Taylor, G. E., "Analytic Solutions
to Several Optimum Transfer Problems", Proceedings, XI International
Astronautical Congress, Stockholm, 1960, Paper 43.

Munick, H., McGill, R., and Taylor, G. E., "Analytic Solution
to Several Optimum Orbit Transfer Problems'", Journal of As-
tronautical Science, Volume 7, pp 73-77, Winter, 1960.

Neustadt, Lucien W. "Optimization, a Moment Problem and Non-

linear Programming", Saciety for Industrial and Applied Mathematics
Journal on Control, Series A, Volume 2, pp 33-53, 1964.

Neustadt, L. W., "A General Theory of Minimum-Fuel Space Tra-

jectories", Society for Industrial and Applied Mathematics Journal
on Control, Volume 3, pp 317-356, 1965,

Niehoff, John C., "Gravity-Assisted Trajectories to Solar System
Targets", Journal of Spacecraft and Rockets, Volume 3, Number 9,
pp 1351-1356, September, 1966.

Niemeier, Byron M., "Three-Impulse Plane Change for Eccentric
Orbits", Journal of Spacecraft and Rockets, Volume 3, Number 1,
pp 158-160, January, 1966. '

Oberth, H., Wege zur Raumschiffahrt, Munich, Oldenbourg, 1929,

Paiewonsky, Bernard H., "Transfer Between Vehicles in Circular
Orbits", Jet Propulsion, Volume 28, Number 2, pp 121-123,
February, 1958.

Paiewonsky, Bernard, "Optimal Control: A Review of Theory and
Practice", ATAA Journal, Volume 3, Number 11, pp 1985-2006,
November, 1965.

Pines, S., "Constants of the Motion for Optimal Thrust Tra-
jectories in a Central Force Field", ATAA Journal, Volume 2,
Number 11, pp 2010-2014, November, 1964,




.~ 78

. REFERENCES
(Continued)

(117) Porter, R. F., Luce, R. G., and Edgecombe, D. S., Gravity-Assisted
Trajectories for Unmanned Space Exploration, Report BMI-NLVP-FTR-
65-1, Battelle Memorial Institute, September, 1965.

(118) Potter, J. E. and Stern, R. G., "Opﬁimization of Midcourse
Velocity Corrections'", IFAC Symposium on Automatic Control
in the Peaceful Uses of Space, Stavanger, Norway, June, 1965,

(119) Prussing, John, "Optimal Multiple-Impulse Orbital Rendezvous",
Review of NASA Sponsored Research at the Experimental Astronomy
Laboratory, Stern, Robert G., Editor, pp 39-44, January, 1967,
NASA CR 84291, PR-3.

(120) Ribarich, J. J. and Meredith, C. M., "Analysis of Surveyor Mid-
course Guidance as a Problem in the Theory of Maxima and Minima'',
Journal of Spacecraft and Rockets, Volume 3, Number 7, pp 997-
1001, July, 1966. '

(121) Rider, Leonard, "Characteristic Velocity for Changing the In-
clination of a Circular Orbit to the Equator", American

Rocket Society Journal, Volume 29, Number 1, pp 48-49, January,
1959, :

Rider, L., "Ascent from Imnner Circular to Outer Coplanar Elliptic

Orbits", American Rocket Society Journal, Volume 30,
Number 3, pp 254 258, March, 1960,

(123) Rider, L., "Characteristic Velocity Requirements for Impulsive
Thrust Transfers Between Non-Coplanar Circular Orbits",

American Rocket Society Journal, Volume 31, Number 3, pp
345-351, March, 1961.

(124) Rishel, R. W., "An Extended Pontryagin Principle for Control
Systems whose Control Laws Contain Measures'', Society for
Industrial and Applied Mathematics Journal on Control, “Volume 3,
pp 191-205, 1965,

(125) Rishel, R. W., "Application of an Extended Pontryagin Principle',
IEEE Transactlons on Automatic Control, Volume AC-11, pp 167-
170, April, 1966,

(126) Robbins, H. M., "Optimality of Intermediate-Thrust Arcs of
Rocket Trajectories', AIAA Journal, Volume 3, Number 6, pp 1094-
1098, June, 1965.

(127) Robbins, H. M., "An Analytical Study of the Impulsive Approxima-
tion", ATAA Journal, Volume &4, Number 8, pp 1417-1423, August, 1966.

(128) Roth, H. L., "Minimization of the Velocity Increment for a Bi-
Elllptlc Transier with Plane Change', Astronautica Acta, Volume 13,
Number 2, pp 119-130, 1967,

I GBN I T G A G Y N R N BN TUD BN TEe e o ww A
”~~
=
N
N
A



'

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

79

REFERENCES
(Continued)

Ruppe, Harry 0., "Minimum Energy Requirements for Space Travel",
Processings X International Astronautical Federation Congress,
pp 181-201, Berlin, Springer Verlag, 1960.

Schmaedeke, W. W., "Optimal Control Theory for Nonlinear Vector
Differential Equations Containing Measures'", Society for Indus-
trial and Applied Mathematics Journal on Control, Volume 3,

pp 231-280, 1965.

Schneider, A. M, et al, Variable Point Guidance Study, USAF
Space Systems Division SSD-TDR-65-100, July, 1965.

Silber, Robert, Survey of Characteristic Velocity Requirements
for Two-Impulse Transfers Between Circular and Coplanar Ex-
terior Elliptical Orbits with Exposition of Local and Overall
Optimum Solutuons, NASA TN D-600, March, 1961.

Skidmore, L. J. and Penzo, P. A., "Monte Carlo Simulation of the
Midcourse Guidance for Lunar Flights', ATAA Journal, Volume 1,
Number 4, pp 820-831, April, 1963,

Smith, G. C., "The Calculation of Minimal Orbits'", Astronautica
Acta, Volume 5, pp 253-265, 1959,

Stark, H. M., "Optimum Trajectories Between Two Terminals in

Space", American Rocket Society Journal, Volume 31, Number
2, pp 261-263, February, 1961. ~—

Szebehely, Victor G., "Special Orbits for the Exploration of

Mars and Venus", Proceedings of the Conference on the Exploration
of Mars and Venus, Virginia Polytechnic Institute, Blacksburg,
Virginia, 23-27 August, 1965, NASA CR-76363.

Ting, L., "Optimum Orbital Transfer by Several Impulses",
Astronautica Acta, Vclume 6, pp 256-265, 1960.

Ting, L., "Optimum Orbital Transfer by Impulses", American

Rocket Society Journal, Volume 30, Number 11, pp 1013-1018,
November, 1960.

Ting. L. and Pierucci, M., "Optimum Launching of a Satellite by
Two Impulses of Unequal Specific Impuise', Astronautica Acta,
Volume 9, Number 3, pp 174-183, 1963.

Tito, Dernnis A., "Trajectory Design for the Mariner-Mars 1964
Mission", Journal of Spacecraft and Rockets, Volume 4, Number 3,
pp 289-296, March, 1967.

Van Gelder, A., Beltrami, E., and Munick, H., "On Minimum-Time,
Minimum Fuel Rendezvous", Journal of the Society for Industrial and
Applied Mathematics, Volume 9, Number 3, pp 474-480, September,
1961,




(142)

(143)

(144)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

80

REFERENCES
(Continued)

Vargo, Louis G., "Optimal Transfer Between Two Coplanar Terminals
in a Gravitational Field", Advances in Astronautical Sciences,
Volume 3, pp 20-1 through 20-9, New York, Plenum Press, 1958.

Vargo, Louis G., "A Generalization of the Minimum Impulse Theorem
to the Restricted Three-Body Problem", Journal of the British
Interplanetary Society, Volume 17, pp 124-126, 1959-60.

Vinh, N. X., "A Property of Cotangential Elliptical Transfer
Orbits", ATAA Journal, Volume 2, Number 10, pp 1841-1844, October,
1964.

Vinh, N, X, and Busemann, A., Geometric Theory of Optimum Dis-
orbit Problems, NASA CR-750, April, 1967.

Wallner, Edward P. and Camiel, Joel J., '"Plane Change Split in
Circular Orbits", Journal of Spacecraft and Rockets, Volume 3,
Number 4, pp 603-605, April, 1966.

Wang, K., "Estimate of the Effect of Large Thrust on Hohmann-
Type Transfers', American Rocket Society Journal, Volume
32, Number 4, pp 642-643.

Wang, W., "Minimum Time Transfer Between Co-Planar, Circular
Orbits by Two Impulses, and the Propulsion Requirements",
Astronautica Acta, Volume 9, pp 12-19, 1963.

Warga, J., "Variational Problems with Unbounded Controls",
Society for Industrial and Applied Mathematics, Journal on Control,
Volume 3, Number 3, pp 424-438, 1965.

Wen, L. S., "A Study of Cotangential Elliptical Transfer Orbits
in Space Flight", Journal of the Aerospace Sciences, Volume 28, pp
411-416, 1961,

Willis, Edward A., Finite-Thrust Escape From and Capture Into
Circular and Elliptic Orbits, NASA TN D-3606, September, 1966,

Winn, Coleman B., Minimum Fuel Transfers Between Coaxial Ellipses,
Both Coplanar and Non-Coplanar, Stanford University, Department

of Aeronautics and Astronautics, SUDAAR 243, AFAL TR 65-276, August,
1965, also American Astronautical Society Preprint 66-119,

Yaroshevsky, V. A. and Parysheva, G. V., "Optimum Distribution of
Correcting Impulses in Single-Parameter Correction'", Cosmic Re-
search, Volume 4, Number 1, pp 1-20, June, 1966, AD 639378.




